35 resultados para CpTI
Resumo:
The aim of this study was to perform a physicochemical and morphological characterization and compare the mechanical behavior of an experimental Ti-Mo alloy to the analogous metallic Ti-based fixation system, for mandibular angle fractures. Twenty-eight polyurethane mandibles were uniformly sectioned on the left angle. These were divided into 4 groups: group Eng 1P, one 2.0-mm plate and 4 screws 6 mm long; group Eng 2P, two 2.0-mm plates, the first fixed with 4 screws 6 mm long and the second with 4 screws 12 mm long. The same groups were created for the Ti-15Mo alloy. Each group was subjected to linear vertical loading at the first molar on the plated side in a mechanical testing unit. Means and standard deviations were compared with respect to statistical significance using ANOVA. The chemical composition of the Ti-15Mo alloy was close to the nominal value. The mapping of Mo and Ti showed a homogeneous distribution. SEM of the screw revealed machining debris. For the plates, only the cpTi plate undergoes a surface treatment. The metallographic analysis reveals granular microstructure, from the thermomechanical trials. A statistically significant difference was found (P < 0.05) when the comparison between both internal fixation techniques was performed. The 2P technique showed better mechanical behavior than 1P.
Resumo:
Objectives: the purpose of this study was to evaluate the surfaces of commercially pure titanium (cpTi) implants surface modified by laser beam (LS), by laser beam associated with sodium silicate deposition (SS) and compare them with surfaces modified by dual-acid etched (AS) and with machined surface (MS). Methods: thirty rabbits received two implants each (one for each tibia). After 30, 60 and 90 days postoperative, the implants were removed by reverse torque for biomechanical analysis and surfaces were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). Results: the mean values of reverse torque at 30, 60 and 90 days postoperative were respectively 24.60, 43.60 e 60.40 N.cm to MS, 43.00, 68.20 e 63.80 N.cm to AS group, 59.80, 76.60 e 78.00 N.cm to LS group and 63.00, 75.40 e 76.60 N.cm to SS group. At 30 days, LS and SS groups showed statistically significant difference (p<0.05) compared to the other groups. At 60 days, LS and SS groups showed statistically significant difference (p<0.05) when compared to MS. Conclusions: it was concluded that SL and SS implants' biomechanical and topographical properties increased bone-implant interaction when compared to the AS and MS implants.
Resumo:
Statement of problem. Coatings of zirconite, Y2O3 or ZrO2 on wax patterns before investing in phosphate-bonded investments have been recommended to reduce the reaction layer in titanium castings, but they are not easily obtainable. Spinel-based investments are relatively stable with molten titanium and could be used as coatings to improve the quality of castings made with those investments. Purpose. The purpose of this study was to evaluate the effect of pattern coating with a commercial spinel-based investment before investing in 1 of 3 phosphate-bonded investments on the marginal coping fit and surface roughness of commercially pure titanium castings. Material and methods. Ten square acrylic resin patterns (12 x 12 x 2 mm) per group were invested in the phosphate-bonded investments Rematitan Plus (RP), Rema Exakt (RE), and Castorit Super C (CA) with or without a coating of the spinel-based investment, Rematitan Ultra (RU). After casting, the specimens were cleaned and the surface roughness was measured with a profilometer. Copings for dental implants with conical abutment were invested, eliminated, and cast as previously described. The copings were cleaned and misfit was measured with a profile projector (n=10). For both tests, the difference between the mean value of RU only and each value of the phosphate-bonded investment was calculated, and the data were analyzed by 2-way ANOVA and Tukey's HSD test (alpha=.05). In addition, the investment roughness was measured in bar specimens (30 x 10 x 10 mm), and the data (n=10) were analyzed by 1-way ANOVA and Tukey's HSD post hoc test (alpha=.05). Results. Two-way ANOVA for casting surface roughness was significant because of the investment, the coating technique, and the interaction between variables. One-way ANOVA was performed to prove the interaction term, and Tukey's post hoc test showed that RP with coating had the lowest mean, while RP had the highest. CA with coating was not different from RP with coating or CA without coating. RE with coating was similar to CA, while RE was different from all groups. For coping marginal fit, the 2-way ANOVA was significant for the investment, the coating technique, and the interaction between variables. The interaction was analyzed by1-way ANOVA and Tukey's HSD test that showed no significant difference among the coated groups, which had better marginal fit than the groups without coating. Among the groups without coating, CA had significant lower marginal misfit than RP, while RE was not different from CA and RP. For the investment surface roughness, the 1-way ANOVA was significant. CA and RU were smoother than RE and RP (P<.001). Conclusions. The coating technique improved the quality of castings fabricated with phosphate-bonded investments. (J Prosthet Dent 2012;108:51-57)
Resumo:
Implants made of commercially pure titanium (cpTi) are widely and successfully used in dentistry. For certain indications, diameter-reduced Ti alloy implants with improved mechanical strength are highly desirable. The aim was to compare the osseointegration of titanium-zirconium (TiZr) and cpTi implants with a modified sandblasted and acid-etched (SLActive) surface and with a Ti6Al4V alloy that was sand-blasted and acid-washed. Cylindrical implants with two, 0.75 mm deep, circumferential grooves were placed in the maxilla of miniature pigs and allowed to heal for 1, 2, 4 and 8 weeks. Undecalcified toluidine blue-stained ground sections were produced. Surface topography, area fraction of tissue components, and bone-to-implant contact (BIC) were determined. All materials showed significantly different surface roughness parameters. The amount of new bone within the implant grooves increased over time, without significant differences between materials. However, BIC values were significantly related to the implant material and the healing period. For TiZr and cpTi implants, the BIC increased over time, reaching values of 59.38 % and 76.15 % after 2 weeks, and 74.50 % and 84.67 % after 8 weeks, respectively. In contrast, the BIC for Ti6Al4V implants peaked with 42.29 % after 2 weeks followed by a decline to 28.60 % at 8 weeks. Significantly more surface was covered by multinucleated giant cells on Ti6Al4V implants after 4 and 8 weeks. In conclusion, TiZr and cpTi implants showed faster osseointegration than Ti6Al4V implants. Both chemistry and surface topography might have influenced the results. The use of diameter-reduced TiZr implants in more challenging clinical situations warrants further documentation in long-term clinical studies.
Resumo:
Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.