977 resultados para Cosmological fluctuations
Resumo:
Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a gamma-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.
Resumo:
Damping of tidal head fluctuations in a leaky confined coastal aquifer is enhanced by leakage into an overlying phreatic aquifer. We show that the phreatic aquifer is, however, resistant to the leakage flow and in particular, a deep phreatic aquifer can reduce the leakage effects significantly. An analytical solution, based on a vertical flow model for the phreatic aquifer, is derived for quantifying the role of this upper free water body in tidal propagation in the lower semi-confined aquifer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
High-frequency beach water table fluctuations due to wave run-up and rundown have been observed in the field [Waddell, 1976]. Such fluctuations affect the infiltration/exfiltration process across the beach face and the interstitial oxygenation process in the beach ecosystem. Accurate representation of high-frequency water table fluctuations is of importance in the modeling of (1) the interaction between seawater and groundwater, more important, the effects on swash sediment transport and (2) the biological activities in the beach ecosystem. Capillarity effects provide a mechanism for high-frequency water table fluctuations. Previous modeling approaches adopted the assumption of saturated flow only and failed to predict the propagation of high-frequency fluctuations in the aquifer. In this paper we develop a modified kinematic boundary condition (kbc) for the water table which incorporates capillarity effects. The application of this kbc in a boundary element model enables the simulation of high-frequency water table fluctuations due to wave run-up. Numerical tests were carried out for a rectangular domain with small-amplitude oscillations; the behavior of water table responses was found to be similar to that predicted by an analytical solution based on the one-dimensional Boussinesq equation. The model was also applied to simulate the water table response to wave run-up on a doping beach. The results showed similar features of water table fluctuations observed in the field. In particular, these fluctuations are standing wave-like with the amplitude becoming increasingly damped inland. We conclude that the modified kbc presented here is a reasonable approximation of capillarity effects on beach water table fluctuations. However, further model validation is necessary before the model can confidently be used to simulate high-frequency water table fluctuations due to wave run-up.
Resumo:
Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose-Einstein condensates. This is achieved by studying the exact solution of the model within the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.
Resumo:
We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.
Resumo:
Previous studies on tidal water table dynamics in unconfined coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction based on the assumption of a straight coastline. Here, two-dimensional analytical solutions are derived to study the effects of rhythmic coastlines on tidal water table fluctuations. The computational results demonstrate that the alongshore variations of the coastline can affect the water table behavior significantly, especially in areas near the centers of the headland and embayment. With the coastline shape effects ignored, traditional analytical solutions may lead to large errors in predicting coastal water table fluctuations or in estimating the aquifer's properties based on these signals. The conditions under which the coastline shape needs to be considered are derived from the new analytical solution.
Resumo:
The synthesis of helium in the early Universe depends on many input parameters, including the value of the gravitational coupling during the period when the nucleosynthesis takes place. We compute the primordial abundance of helium as function of the gravitational coupling, using a semi-analytical method, in order to track the influence of G in the primordial nucleosynthesis. To be specific, we construct a cosmological model with varying G, using the Brans-Dicke theory. The greater the value of G at nucleosynthesis period, the greater the predicted abundance of helium. Using the observational data for the abundance of primordial helium, constraints for the time variation of G are established.
Resumo:
The purpose of this work was to determine the diversity and population fluctuations of calliphorid flies in the Biological Reserve of Tinguá (ReBio-Tinguá), Nova Iguaçu, state of Rio de Janeiro, Brazil and to correlate their occurrence with the environmental variables of temperature, rainfall and relative air humidity. Specimens of Diptera were collected monthly between June 2002 and January 2005 using four traps placed at four points along a trail and exposed for 48 hours. The traps were baited with sardines and the trapped insects were stored in 70% alcohol. It was collected 8,528 calliphorids, thirteen species were identified among the blowflies including Laneela nigripes Guimarães 1977, Chrysomya megacephala (Fabricius, 1794), C. albiceps (Wiedemann, 1819), C. putoria (Wiedemann, 1830), Chloroprocta idioidea (Robineau-Devoidy, 1830), Cochliomyia macellaria (Fabricius, 1775), Hemilucilia semidiaphana (Rondani, 1850), H. segmentaria (Fabricius, 1805), Lucilia eximia (Wiedemann,1819), L. cuprina (Wiedemann, 1830), Paralucilia pseudolyrcea (Mello, 1969), Mesembrinella sp. and Eumesembrinella pauciseta (Aldrich, 1922). No significant correlation was found between the abundance of blowflies and the temperature and relative air humidity. Only C. megacephala and C. albiceps showed a positive and significant correlation with rainfall. An analysis of grouping by month (UPGMA) revealed no seasonal difference in the composition of the community, indicating that the community of calliphorid flies is probably more influenced by the ecological niches occupied by each species than by the seasons of the year.
Resumo:
We analyse the implications of optimal taxation for the stochastic behaviour of debt. We show that when a government pursues an optimal fiscal policy under complete markets, the value of debt has the same or less persistence than other variables in the economy and it declines in response to shocks that cause the deficit to increase. By contrast, under incomplete markets debt shows more persistence than other variables and it increases in response to shocks that cause a higher deficit. Data for US government debt reveals diametrically opposite results from those of complete markets and is much more supportive of bond market incompleteness.
Resumo:
This paper shows that introducing weak property rights in the standard real business cycle (RBC) model can help to explain economic fluctuations. This is motivated by the empirical observation that changes in institutions in emerging markets are related to the evolution of the main macroeconomic variables. In particular, in Mexico, the movements in productivity in the data are associated with changes in institutions, so that we can explain productivity shocks to a large extent as shocks to the quality of institutions. We find that the model with shocks to the degree of protection of property rights only - without technology shocks - can match the second moments in the data for Mexico well. In particular, the fit is better than that of the standard neoclassical model with full protection of property rights regarding the auto-correlations and cross-correlations in the data, especially those related to labor. Viewing productivity shocks as shocks to institutions is also consistent with the stylized fact of falling productivity and non-decreasing labor hours in Mexico over 1980-1994, which is a feature that the neoclassical model cannot match.
Resumo:
This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.