917 resultados para Corneal biomechanics
Resumo:
Although comparison phakometry has been used by a number of studies to measure posterior corneal shape, these studies have not calculated the size of the posterior corneal zones of reflection they assessed. This paper develops paraxial equations for calculating posterior corneal zones of reflection, based on standard keratometry equations and equivalent mirror theory. For targets used in previous studies, posterior corneal reflection zone sizes were calculated using paraxial equations and using exact ray tracing, assuming spherical and aspheric corneal surfaces. Paraxial methods and exact ray tracing methods give similar estimates for reflection zone sizes less than 2 mm, but for larger zone sizes ray tracing methods should be used.
Resumo:
Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.
Resumo:
This study was designed to derive central and peripheral oxygen transmissibility (Dk/t) thresholds for soft contact lenses to avoid hypoxia-induced corneal swelling (increased corneal thickness) during open eye wear. Central and peripheral corneal thicknesses were measured in a masked and randomized fashion for the left eye of each of seven subjects before and after 3 h of afternoon wear of five conventional hydrogel and silicone hydrogel contact lens types offering a range of Dk/t from 2.4 units to 115.3 units. Curve fitting for plots of change in corneal thickness versus central and peripheral Dk/t found threshold values of 19.8 and 32.6 units to avoid corneal swelling during open eye contact lens wear for a typical wearer. Although some conventional hydrogel soft lenses are able to achieve this criterion for either central or peripheral lens areas (depending on lens power), in general, no conventional hydrogel soft lenses meet both the central and peripheral thresholds. Silicone hydrogel contact lenses typically meet both the central and peripheral thresholds and use of these lenses therefore avoids swelling in all regions of the cornea. ' 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 92B: 361–365, 2010
Resumo:
Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.
Resumo:
Purpose: To investigate the influence of convergence on axial length and corneal topography in young adult subjects.---------- Methods: Fifteen emmetropic young adult subjects with normal binocular vision had axial length and corneal topography measured immediately before and after a 15-min period of base out (BO) prismatic spectacle lens wear. Two different magnitude prismatic spectacles were worn in turn (8 [DELTA] BO and 16 [DELTA] BO), and for both tasks, distance fixation was maintained for the duration of lens wear. Eight subjects returned on a separate day for further testing and had axial length measured before, during, and immediately after a 15-min convergence task.---------- Results: No significant change was found to occur in axial length either during or after the sustained convergence tasks (p > 0.6). Some small but significant changes in corneal topography were found to occur after sustained convergence. The most significant corneal change was observed after the 16 [DELTA] BO prism wear. The corneal refractive power spherocylinder power vector J0 was found to change by a small (mean change of 0.03 D after the 16 [DELTA] BO task) but statistically significant (p = 0.03) amount as a result of the convergence task (indicative of a reduction in with-the-rule corneal astigmatism after convergence). Corneal axial power was found to exhibit a significant flattening in superior regions. Conclusions: Axial length appears largely unchanged by a period of sustained convergence. However, small but significant changes occur in the topography of the cornea after convergence.
Resumo:
Purpose: To investigate the influence of soft contact lenses on regional variations in corneal thickness and shape while taking account of natural diurnal variations in these corneal parameters. Methods: Twelve young, healthy subjects wore 4 different types of soft contact lenses on 4 different days. The lenses were of two different materials (silicone hydrogel, hydrogel), designs (spherical, toric) and powers (–3.00, –7.00 D). Corneal thickness and topography measurements were taken before and after 8 hours of lens wear and on two days without lens wear, using the Pentacam HR system. Results: The hydrogel toric contact lens caused the greatest level of corneal thickening in the central (20.3 ± 10.0 microns) as well as peripheral cornea (24.1 ± 9.1 microns) (p < 0.001) with an obvious regional swelling of the cornea beneath the stabilizing zones. The anterior corneal surface generally showed slight flattening. All contact lenses resulted in central posterior corneal steepening and this was weakly correlated with central corneal swelling (p = 0.03) and peripheral corneal swelling (p = 0.01). Conclusions: There was an obvious regional corneal swelling apparent after wear of the hydrogel soft toric lenses, due to the location of the thicker stabilization zones of the toric lenses. However with the exception of the hydrogel toric lens, the magnitude of corneal swelling induced by the contact lenses over the 8 hours of wear was less than the natural diurnal thinning of the cornea over this same period.
Resumo:
Purpose: To analyze the repeatability of measuring nerve fiber length (NFL) from images of the human corneal subbasal nerve plexus using semiautomated software. Methods: Images were captured from the corneas of 50 subjects with type 2 diabetes mellitus who showed varying severity of neuropathy, using the Heidelberg Retina Tomograph 3 with Rostock Corneal Module. Semiautomated nerve analysis software was independently used by two observers to determine NFL from images of the subbasal nerve plexus. This procedure was undertaken on two occasions, 3 days apart. Results: The intraclass correlation coefficient values were 0.95 (95% confidence intervals: 0.92–0.97) for individual subjects and 0.95 (95% confidence intervals: 0.74–1.00) for observer. Bland-Altman plots of the NFL values indicated a reduced spread of data with lower NFL values. The overall spread of data was less for (a) the observer who was more experienced at analyzing nerve fiber images and (b) the second measurement occasion. Conclusions: Semiautomated measurement of NFL in the subbasal nerve fiber layer is highly repeatable. Repeatability can be enhanced by using more experienced observers. It may be possible to markedly improve repeatability when measuring this anatomic structure using fully automated image analysis software.
Resumo:
Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.
Resumo:
OBJECTIVE: The accurate quantification of human diabetic neuropathy is important to define at-risk patients, anticipate deterioration, and assess new therapies. ---------- RESEARCH DESIGN AND METHODS: A total of 101 diabetic patients and 17 age-matched control subjects underwent neurological evaluation, neurophysiology tests, quantitative sensory testing, and evaluation of corneal sensation and corneal nerve morphology using corneal confocal microscopy (CCM). ---------- RESULTS: Corneal sensation decreased significantly (P = 0.0001) with increasing neuropathic severity and correlated with the neuropathy disability score (NDS) (r = 0.441, P < 0.0001). Corneal nerve fiber density (NFD) (P < 0.0001), nerve fiber length (NFL), (P < 0.0001), and nerve branch density (NBD) (P < 0.0001) decreased significantly with increasing neuropathic severity and correlated with NDS (NFD r = −0.475, P < 0.0001; NBD r = −0.511, P < 0.0001; and NFL r = −0.581, P < 0.0001). NBD and NFL demonstrated a significant and progressive reduction with worsening heat pain thresholds (P = 0.01). Receiver operating characteristic curve analysis for the diagnosis of neuropathy (NDS >3) defined an NFD of <27.8/mm2 with a sensitivity of 0.82 (95% CI 0.68–0.92) and specificity of 0.52 (0.40–0.64) and for detecting patients at risk of foot ulceration (NDS >6) defined a NFD cutoff of <20.8/mm2 with a sensitivity of 0.71 (0.42–0.92) and specificity of 0.64 (0.54–0.74). ---------- CONCLUSIONS: CCM is a noninvasive clinical technique that may be used to detect early nerve damage and stratify diabetic patients with increasing neuropathic severity. Established diabetic neuropathy leads to pain and foot ulceration. Detecting neuropathy early may allow intervention with treatments to slow or reverse this condition (1). Recent studies suggested that small unmyelinated C-fibers are damaged early in diabetic neuropathy (2–4) but can only be detected using invasive procedures such as sural nerve biopsy (4,5) or skin-punch biopsy (6–8). Our studies have shown that corneal confocal microscopy (CCM) can identify early small nerve fiber damage and accurately quantify the severity of diabetic neuropathy (9–11). We have also shown that CCM relates to intraepidermal nerve fiber loss (12) and a reduction in corneal sensitivity (13) and detects early nerve fiber regeneration after pancreas transplantation (14). Recently we have also shown that CCM detects nerve fiber damage in patients with Fabry disease (15) and idiopathic small fiber neuropathy (16) when results of electrophysiology tests and quantitative sensory testing (QST) are normal. In this study we assessed corneal sensitivity and corneal nerve morphology using CCM in diabetic patients stratified for the severity of diabetic neuropathy using neurological evaluation, electrophysiology tests, and QST. This enabled us to compare CCM and corneal esthesiometry with established tests of diabetic neuropathy and define their sensitivity and specificity to detect diabetic patients with early neuropathy and those at risk of foot ulceration.
Resumo:
Purpose: The aim of this study was to determine current approaches adopted by optometrists to the recording of corneal staining following fluorescein instillation. Methods: An anonymous ‘record-keeping task’ was sent to all 756 practitioners who are members of the Queensland Division of Optometrists Association Australia. This task comprised a form on which appeared a colour photograph depicting contact lens solution-induced corneal staining. Next to the photograph was an empty box, in which practitioners were asked to record their observations. Practitioners were also asked to indicate the level of severity of the condition at which treatment would be instigated. Results: Completed task forms were returned by 228 optometrists, representing a 30 per cent response rate. Ninety-two per cent of respondents offered a diagnosis. The most commonly used descriptive terms were ‘superficial punctate keratitis’ (36 per cent of respondents) and ‘punctate staining’ (29 per cent). The level of severity and location of corneal staining were noted by 69 and 68 per cent of respondents, respectively. A numerical grade was assigned by 44 per cent of respondents. Only three per cent nominated the grading scale used. The standard deviation of assigned grades was � 0.6. The condition was sketched by 35 per cent of respondents and two per cent stated that they would take a photograph of the eye. Ten per cent noted the eye in which the condition was being observed. Opinions of the level of severity at which treatment for corneal staining should be instigated varied considerably between practitioners, ranging from ‘any sign of corneal staining’ to ‘grade 4 staining’. Conclusion: Although most practitioners made a sensible note of the condition and properly recorded the location of corneal staining, serious deficiencies were evident regarding other aspects of record-keeping. Ongoing programs of professional optometric education should reinforce good practice in relation to clinical record-keeping.
Resumo:
Purpose. The objective of this study was to explore the discriminative capacity of non-contact corneal esthesiometry (NCCE) when compared with the neuropathy disability score (NDS) score—a validated, standard method of diagnosing clinically significant diabetic neuropathy. Methods. Eighty-one participants with type 2 diabetes, no history of ocular disease, trauma, or surgery and no history of systemic disease that may affect the cornea were enrolled. Participants were ineligible if there was history of neuropathy due to non-diabetic cause or current diabetic foot ulcer or infection. Corneal sensitivity threshold was measured on the eye of dominant hand side at a distance of 10 mm from the center of the cornea using a stimulus duration of 0.9 s. The NDS was measured producing a score ranging from 0 to 10. To determine the optimal cutoff point of corneal sensitivity that identified the presence of neuropathy (diagnosed by NDS), the Youden index and “closest-to-(0,1)” criteria were used. Results. The receiver-operator characteristic curve for NCCE for the presence of neuropathy (NDS ≥3) had an area under the curve of 0.73 (p = 0.001) and, for the presence of moderate neuropathy (NDS ≥6), area of 0.71 (p = 0.003). By using the Youden index, for an NDS ≥3, the sensitivity of NCCE was 70% and specificity was 75%, and a corneal sensitivity threshold of 0.66 mbar or higher indicated the presence of neuropathy. When NDS ≥6 (indicating risk of foot ulceration) was applied, the sensitivity was 52% with a specificity of 85%. Conclusions. NCCE is a sensitive test for the diagnosis of minimal and more advanced diabetic neuropathy and may serve as a useful surrogate marker for diabetic and perhaps other neuropathies.
Resumo:
Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.