952 resultados para Core data set
Resumo:
ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.
Resumo:
The mineralogy of airborne dust affects the impact of dust particles on direct and indirect radiative forcing, on atmospheric chemistry and on biogeochemical cycling. It is determined partly by the mineralogy of the dust-source regions and partly by size-dependent fractionation during erosion and transport. Here we present a data set that characterizes the clay and silt-sized fractions of global soil units in terms of the abundance of 12 minerals that are important for dust–climate interactions: quartz, feldspars, illite, smectite, kaolinite, chlorite, vermiculite, mica, calcite, gypsum, hematite and goethite. The basic mineralogical information is derived from the literature, and is then expanded following explicit rules, in order to characterize as many soil units as possible. We present three alternative realizations of the mineralogical maps, taking the uncertainties in the mineralogical data into account. We examine the implications of the new database for calculations of the single scattering albedo of airborne dust and thus for dust radiative forcing.
Resumo:
The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.
Resumo:
A comprehensive atmospheric boundary layer (ABL) data set was collected in eight fi eld experiments (two during each season) over open water and sea ice in the Baltic Sea during 1998–2001 with the primary objective to validate the coupled atmospheric- ice-ocean-land surface model BALTIMOS (BALTEX Integrated Model System). Measurements were taken by aircraft, ships and surface stations and cover the mean and turbulent structure of the ABL including turbulent fl uxes, radiation fl uxes, and cloud conditions. Measurement examples of the spatial variability of the ABL over the ice edge zone and of the stable ABL over open water demonstrate the wide range of ABL conditions collected and the strength of the data set which can also be used to validate other regional models.
Resumo:
Parkinson's disease (PD) is a degenerative illness whose cardinal symptoms include rigidity, tremor, and slowness of movement. In addition to its widely recognized effects PD can have a profound effect on speech and voice.The speech symptoms most commonly demonstrated by patients with PD are reduced vocal loudness, monopitch, disruptions of voice quality, and abnormally fast rate of speech. This cluster of speech symptoms is often termed Hypokinetic Dysarthria.The disease can be difficult to diagnose accurately, especially in its early stages, due to this reason, automatic techniques based on Artificial Intelligence should increase the diagnosing accuracy and to help the doctors make better decisions. The aim of the thesis work is to predict the PD based on the audio files collected from various patients.Audio files are preprocessed in order to attain the features.The preprocessed data contains 23 attributes and 195 instances. On an average there are six voice recordings per person, By using data compression technique such as Discrete Cosine Transform (DCT) number of instances can be minimized, after data compression, attribute selection is done using several WEKA build in methods such as ChiSquared, GainRatio, Infogain after identifying the important attributes, we evaluate attributes one by one by using stepwise regression.Based on the selected attributes we process in WEKA by using cost sensitive classifier with various algorithms like MultiPass LVQ, Logistic Model Tree(LMT), K-Star.The classified results shows on an average 80%.By using this features 95% approximate classification of PD is acheived.This shows that using the audio dataset, PD could be predicted with a higher level of accuracy.
Resumo:
The taxonomy of the N(2)-fixing bacteria belonging to the genus Bradyrhizobium is still poorly refined, mainly due to conflicting results obtained by the analysis of the phenotypic and genotypic properties. This paper presents an application of a method aiming at the identification of possible new clusters within a Brazilian collection of 119 Bradryrhizobium strains showing phenotypic characteristics of B. japonicum and B. elkanii. The stability was studied as a function of the number of restriction enzymes used in the RFLP-PCR analysis of three ribosomal regions with three restriction enzymes per region. The method proposed here uses Clustering algorithms with distances calculated by average-linkage clustering. Introducing perturbations using sub-sampling techniques makes the stability analysis. The method showed efficacy in the grouping of the species B. japonicum and B. elkanii. Furthermore, two new clusters were clearly defined, indicating possible new species, and sub-clusters within each detected cluster. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb̄ using the data sample collected with the D0 detector in pp̄ collisions at √s=1.96TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100GeV≤M H≤150GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120GeV≤M H≤145GeV, the data exhibit an excess above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson. © 2012 American Physical Society.
Resumo:
Dati climatici ad alta risoluzione sono attualmente molto richiesti essendo indispensabili per la valutazione degli impatti dei cambiamenti climatici alla scala locale in svariati campi d'applicazione. Per aumentare l'offerta di tali dati per il territorio italiano viene presentata in questo studio la realizzazione di un data-set con risoluzione di trenta secondi d'arco, per le temperature massime e minime giornaliere per il Trentino Alto Adige, per il periodo che va dal 1951 al 2014. La metodologia utilizzata per proiettare i dati meteorologici di un set di stazioni su di un grigliato ad alta risoluzione si basa sull'assunzione che la struttura spazio-temporale del campo di una variabile meteorologica su una determinata area possa essere descritta dalla sovrapposizione di due campi:i valori normali relativi e un periodo standard, ovvero la climatologia,e le deviazioni da questi, ovvero le anomalie. La climatologia mensile verrà interpolata sull'intero dominio tramite una regressione lineare pesata della temperatura rispetto alla quota,stimata separatamente per ogni nodo del grigliato,con pesi legati alla topografia del territorio,in modo da attribuire di volta in volta la massima importanza alle stazioni con caratteristiche più simili a quella del punto di griglia considerato. Da questa sarà possibile tramite la sovrapposizione con le anomalie mensili ricostruite sul medesimo grigliato, ottenute mediante un'interpolazione basata su una media pesata,ottenere un grigliato a 30 secondi d'arco, di serie temporali mensili in valori assoluti. Combinando poi l'interpolazione dei rapporti delle anomalie giornaliere relative alla media mensile per un set di stazioni con i campi mensili precedentemente stimati,sarà possibile costruire il data-set a risoluzione giornaliera. Prima di quest'ultima fase sarà necessario effettuare un'operazione di sincronizzazione dei dati giornalieri per assicurarsi che non vi siano sfasamenti nelle serie utilizzate. I risultati confermano l'efficacia nell'utilizzo di tale metodo su regioni orograficamente complesse, sia nel confronto diretto con i casi di studio,nei quali si nota bene la discriminazione spaziale effettuata dal modello, che nella valutazione dell'accuratezza e della precisione dei risultati. I dati ottenuti non sono affetti da errori sistematici,mentre l'errore medio assoluto risulta pari od inferiore ai $2^{\circ}$C, in linea con precedenti studi realizzati su altre aree alpine. Il metodo e i risultati risultano soddisfacenti ma ulteriormente migliorabili, sia tramite un ulteriore ottimizzazione del modello usato, che con un aumento nella qualità dei dati sui quali è stato svolto lo studio.
Resumo:
In questa tesi si presenta la realizzazione di un data-set ad alta risoluzione (30 secondi d'arco) di precipitazioni mensili (per il periodo 1921-2014), per la regione del Trentino-Alto Adige. Esso è basato su una densa rete di stazioni con osservazioni di lunga durata, sottoposte ai necessari controlli di qualità. La tecnica di interpolazione si basa sull'assunzione che la configurazione spazio-temporale del campo di una variabile meteorologica su una certa area possa essere descritta con la sovrapposizione di due campi: i valori normali relativi a un periodo standard (1961-1990), ossia le climatologie, e le deviazioni da questi, ossia le anomalie. Le due componenti possono venire ricostruite tramite metodologie diverse e si possono basare su data-set indipendenti. Per le climatologie bisogna avere un elevato numero di stazioni (anche se disponibili per un lasso temporale limitato); per le anomalie viceversa la densità spaziale ha un rilievo minore a causa della buona coerenza spaziale della variabilità temporale, mentre è importante la qualità dei dati e la loro estensione temporale. L'approccio utilizzato per le climatologie mensili è la regressione lineare pesata locale. Per ciascuna cella della griglia si stima una regressione lineare pesata della precipitazione in funzione dell'altitudine; si pesano di più le stazioni aventi caratteristiche simili a quelle della cella stessa. Invece le anomalie mensili si ricavano, per ogni cella di griglia, grazie a una media pesata delle anomalie delle vicine stazioni. Infine la sovrapposizione delle componenti spaziale (climatologie) e temporale (anomalie) consente di ottenere per ogni nodo del grigliato una serie temporale di precipitazioni mensili in valori assoluti. La bontà dei risultati viene poi valutata con gli errori quadratici medi (RMSE) e i coefficienti di correlazione di Pearson delle singole componenti ricostruite. Per mostrare le potenziali applicazioni del prodotto si esaminano alcuni casi studio.