923 resultados para Core Vesicle Exocytosis
Resumo:
Homotypic fusion of immature secretory granules (ISGs) gives rise to mature secretory granules (MSGs), the storage compartment in endocrine and neuroendocrine cells for hormones and neuropeptides. With the use of a cell-free fusion assay, we investigated which soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) molecules are involved in the homotypic fusion of ISGs. Interestingly, the SNARE molecules mediating the exocytosis of MSGs in neuroendocrine cells, syntaxin 1, SNAP-25, and VAMP2, were not involved in homotypic ISG fusion. Instead, we have identified syntaxin 6 as a component of the core machinery responsible for homotypic ISG fusion. Subcellular fractionation studies and indirect immunofluorescence microscopy show that syntaxin 6 is sorted away during the maturation of ISGs to MSGs. Although, syntaxin 6 on ISG membranes is associated with SNAP-25 and SNAP-29/GS32, we could not find evidence that these target (t)-SNARE molecules are involved in homotypic ISG fusion. Nor could we find any involvement for the vesicle (v)-SNARE VAMP4, which is known to be associated with syntaxin 6. Importantly, we have shown that homotypic fusion requires the function of syntaxin 6 on both donor as well as acceptor membranes, which suggests that t–t-SNARE interactions, either direct or indirect, may be required during fusion of ISG membranes.
Resumo:
In neurons, depolarization induces Ca2+ influx leading to fusion of synaptic vesicles docked at the active zone for neurotransmitter release. While a number of proteins have now been identified and postulated to participate in the assembly and subsequent disengagement of a vesicle docking complex for fusion, the mechanism that ultimately triggers neuroexocytosis remains elusive. Using a cell-free, lysed synaptosomal membrane preparation, we show that Ca2+ alone is sufficient to trigger secretion of glutamate and furthermore that Ca(2+)-signaled exocytosis is effectively blocked by antibodies and peptides to SNAP-25, a key constituent of the vesicle docking complex. In addition, Ca2+ inhibits the ability of synaptotagmin, a synaptic vesicle protein proposed as a calcium sensor and triggering device, to associate with this docking complex. These results support a model in which Ca(2+)-dependent triggering of neurotransmission at central synapses acts after ATP-dependent potentiation of the docking-fusion complex for membrane fusion.
Resumo:
We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of approximately 80 micros at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 micros. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm x ms(-1) (rapid, from endplate omega figure appearance) or 0.275 nm x ms(-1) (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 micros.
Resumo:
Alternative models to describe the endocytosis phase of synaptic vesicle recycling are associated with time scales of vesicle recovery ranging from milliseconds to tens of seconds. There have been suggestions that one of the major models, envisioned as a slow process that occurs only after complete fusion of the vesicle membrane with the neurolemma, might be applicable only under conditions of heavy, nonphysiological stimulation. Using FM 1-43 and similar fluorescent probes to label recycling synaptic vesicles in rat hippocampal neurons, we have measured the kinetics of endocytosis with a wide range of action-potential-driven exocytotic loads. Our results indicate that when either 5% or 25% of the vesicle pool is used, vesicles are recovered with a half-time on the order of 20 s (24 degrees C). This endocytosis rate was not influenced by operations designed to alter intracellular Ca2+ during membrane retrieval, suggesting that residual Ca2+ after strong stimuli probably does not greatly retard endocytosis. Finally, we have shown that vesicle-destaining kinetics are not strongly influenced by the substantially differing rates at which two marker dyes tested dissociate from membranes. This observation suggests that vesicles remain open long enough for essentially complete dissociation of even the slower dye (a few seconds) or, alternatively, that both dyes readily escape vesicle membrane by lateral diffusion through any exocytotic opening. These data seem most consistent with applicability of the slow-endocytosis, complete-fusion model at low as well as high levels of exocytosis.
Resumo:
Amperometry at a carbon fiber microelectrode modified with a composite of ruthenium oxide and cyanoruthenate was used to monitor chemical secretions of single pancreatic beta cells from rats and humans. When the insulin secretagogues glucose, tolbutamide, and K+ were applied to the cell, a series of randomly occurring current spikes was observed. The current spikes were shown to be due to the detection of chemical substances secreted from the cell. Chromatography showed that the primary secreted substance detected by the electrode was insulin. The current spikes were strongly dependent on external Ca2+, had an average area that was independent of the stimulation method, and had an area distribution which corresponded to the distribution of vesicle sizes in beta cells. It was concluded that the spikes were due to the detection of concentration pulses of insulin secreted by exocytosis.
Resumo:
Synapsin I has been proposed to be involved in the modulation of neurotransmitter release by controlling the availability of synaptic vesicles for exocytosis. To further understand the role of synapsin I in the function of adult nerve terminals, we studied synapsin I-deficient mice generated by homologous recombination. The organization of synaptic vesicles at presynaptic terminals of synapsin I-deficient mice was markedly altered: densely packed vesicles were only present in a narrow rim at active zones, whereas the majority of vesicles were dispersed throughout the terminal area. This was in contrast to the organized vesicle clusters present in terminals of wild-type animals. Release of glutamate from nerve endings, induced by K+,4-aminopyridine, or a Ca2+ ionophore, was markedly decreased in synapsin I mutant mice. The recovery of synaptic transmission after depletion of neurotransmitter by high-frequency stimulation was greatly delayed. Finally, synapsin I-deficient mice exhibited a strikingly increased response to electrical stimulation, as measured by electrographic and behavioral seizures. These results provide strong support for the hypothesis that synapsin I plays a key role in the regulation of nerve terminal function in mature synapses.
Resumo:
Neurotransmitter release and hormonal secretion are highly regulated processes culminating in the calcium-dependent fusion of secretory vesicles with the plasma membrane. Here, we have identified a role for phosphatidylinositol 3-kinase C2 alpha (PI3K-C2 alpha) and its main catalytic product, PtdIns3P, in regulated exocytosis. In neuroendocrine cells, PI3K-C2 alpha is present on a subpopulation of mature secretory granules. Impairment of PI3K-C2 alpha function specifically inhibits the ATP-dependent priming phase of exocytosis. Overexpression of wild-type PI3K-C2 alpha enhanced secretion, whereas transfection of PC12 cells with a catalytically inactive PI3K-C2 alpha mutant or a 2xFYVE domain sequestering PtdIns3P abolished secretion. Based on these results, we propose that production of PtdIns3P by PI3K-C2 alpha is required for acquisition of fusion competence in neurosecretion.
Resumo:
A key function of activated macrophages is to secrete proinflammatory cytokines such as TNF alpha; however, the intracellular pathway and machinery responsible for cytokine trafficking and secretion is largely undefined. Here we show that individual SNARE proteins involved in vesicle docking and fusion are regulated at both gene and protein expression upon stimulation with the bacterial cell wall component lipopolysaccharide. Focusing on two intracellular SNARE proteins, Vti1b and syntaxin 6 (Stx6), we show that they are up-regulated in conjunction with increasing cytokine secretion in activated macrophages and that their levels are selectively titrated to accommodate the volume and timing of post-Golgi cytokine trafficking. In macrophages, Vti1b and syntaxin 6 are localized on intracellular membranes and are present on isolated Golgi membranes and on Golgi-derived TNF alpha vesicles budded in vitro. By immunoprecipitation, we find that Vti1b and syntaxin 6 interact to form a novel intracellular Q-SNARE complex. Functional studies using overexpression of full-length and truncated proteins show that both Vti1b and syntaxin 6 function and have rate-limiting roles in TNF alpha trafficking and secretion. This study shows how macrophages have uniquely adapted a novel Golgi-associated SNARE complex to accommodate their requirement for increased cytokine secretion.
Resumo:
This is a comprehensive study of protein-mediated membrane fusion through single-molecule fluorescence resonance energy transfer (smFRET). Membrane fusion is one of the important cellular processes by which two initially distinct lipid bilayers merge their hydrophobic cores, resulting in one interconnected structure. For example, exocytosis, fertilization of an egg by a sperm and communication between neurons are a few among many processes that rely on some form of fusion. Proteins called soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) play a central role in fusion processes which is also regulated by many accessory proteins, such as synaptotagmin, complexin and Munc18. By a new lipid mixing method at the single-vesicle level, we are able to accurately detect different stages of SNARE-mediated membrane fusion including docking, hemi and full fusion via FRET value of single donor/acceptor vesicle pair. Through this single-vesicle lipid mixing assay, we discovered the vesicle aggregation induced by C2AB/Ca2+, the dual function of complexin, and the fusion promotion role of Munc18/SNARE-core binding mode. While this new method provides the information regarding the extent of the ensemble lipid mixing, the fusion pore opening between two vesicular cavities and the interaction between proteins cannot be detected. In order to overcome these limitations, we then developed a single-vesicle content mixing method to reveal the key factor of pore expansion by detecting the FRET change of dual-labeled DNA probes encapsulated in vesicles. Through our single-vesicle content mixing assay, we found the fusion pore expansion role of yeast SNAREs as well as neuronal SNAREs plus synaptotagmin 1.