935 resultados para Cooling down time


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scopo della tesi è analizzare il modello di migrazione 'pre-copy' e convalidare il simulatore che lo implementa. Modificando opportunamente il codice e facendo delle prove di simulazione in diversi casi, si vogliono riprodurre i grafici che si ottengono applicando il metodo analitico per la migrazine di insiemi di macchine virtuali. Si cerca di fare chiarezza, attraverso un'analisi dettagliata delle varie opzioni, su come i vari parametri fondamentali del sistema influiscono, dal punto di vista quantitativo, sulle prestazioni del sistema stesso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly available software systems occasionally need to be updated while avoiding downtime. Dynamic software updates reduce down-time, but still require the system to reach a quiescent state in which a global update can be performed. This can be difficult for multi-threaded systems. We present a novel approach to dynamic updates using first-class contexts, called Theseus. First-class contexts make global updates unnecessary: existing threads run to termination in an old context, while new threads start in a new, updated context; consistency between contexts is ensured with the help of bidirectional transformations. We show that for multi-threaded systems with coherent memory, first-class contexts offer a practical and flexible approach to dynamic updates, with acceptable overhead.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A record based on counts of the relative abundance of the dominant calcareous nannofossil taxa Coccolithus pelagicus and Reticulofenestra spp. in sediments recovered from Ocean Drilling Program Hole 747A (Kerguelen Plateau, Southern Indian Ocean) is established in this paper. This record (17 m.y. long) virtually spans the entire Miocene. Broad, steplike variations in the abundance of C. pelagicus range between 0% and 96%. Based on these variations, five stratigraphic units characterized by high abundance in C. pelagicus are delineated. We suggest that these variations are caused by water-mass movements (such as the north/south shifting of a front). This pronounced signal is compared with paleoceanographic events revealed by isotopic (d18O and d13C) studies. The five defined units are tentatively correlated to well-known global isotopic events. In particular, Units A and D correlate respectively with the Oligocene/Miocene boundary glaciation and the middle Miocene cooling event. Time-series analysis indicates the presence of the three main periodic components of the eccentricity of the Earth's orbit. A 200-k.y. cycle is also present. The stratigraphic and paleoceanographic significance of this record is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper summarizes the results of an experimental research to assess the residual mechanical properties of an ordinary concrete after fire. It was studied the influence of the cooling process, the maximum temperature that the concrete was subjected to and the loading level on the residual mechanical properties of calcareous and granite aggregate concretes. The properties studied were the residual compressive, tensile, splitting and flexural strengths and modulus of elasticity. Four levels of temperature; 20, 300, 500 and 700ºC; two loading levels (0.3f and 0.7fcd) and two cooling processes (cooling in the air and by water jet) were tested. The high temperatures attained and the sudden cooling down process on the concrete showed a negative effect on its residual mechanical properties. This effect was more notorious on the residual compression strength than in the other mechanical properties

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the fast changing global business landscape, manufacturing companies are facing increasing challenge to reduce cost of production, increase equipment utilization and provide innovative products in order to compete with countries with low labour cost and production cost. On of the methods is zero down time. Unfortunately, the current research and industrial solution does not provide user friendly development environment to create “Adaptive microprocessor size with supercomputer performance” solution to reduce downtime. Most of the solutions are PC based computer with off the shelf research software tools which is inadequate for the space constraint manufacturing environment in developed countries. On the other hand, to develop solution for various manufacturing domain will take too much time, there is lacking tools available for rapid or adaptive way of create the solution. Therefore, this research is to understand the needs, trends, gaps of manufacturing prognostics and defines the research potential related to rapid embedded system framework for prognostic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and crude bio-oil production yield and lower heating value was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, C, H, N, O, S, cellulose, hemicellulose, and lignin content. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow (1bar) was provided for anaerobic condition. Sago and Napier glass were used in the study to create different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to crude bio-oil yield and low heating value was conducted. The result suggested potential key element characteristic for pyrolysis and provide a platform to access the feedstock element acceptance range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and pyrolysis process outputs was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, carbon, hydrogen, nitrogen, oxygen, and sulphur. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow rate of 5 L/min was provided for anaerobic condition. Rice husk, Sago biomass and Napier grass were used in the study to form different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to total produced bio-oil yield, aqueous phase bio-oil yield, organic phase bio-oil yield, higher heating value of organic phase bio-oil, and organic bio-oil compounds was conducted. The results demonstrate that process performance is associated with feedstock properties, which can be used as a platform to access the process feedstock element acceptance range to estimate the process outputs. Ultimately, this work evaluated the element acceptance range for proposed biomass pyrolysis technology to integrate alternative biomass species feedstock based on element characteristic to enhance the flexibility of feedstock selection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most commercially available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages including low resistance to fouling, low chemical and thermal stabilities and limited chlorine tolerance. To address these problems, advanced RO/NF membranes are being developed from polyimides for water and wastewater treatments. The following three projects have resulted from my research. (1) Positively charged and solvent resistant NF membranes. The use of solvent resistant membranes to facilitate small molecule separations has been a long standing industry goal of the chemical and pharmaceutical industries. We developed a solvent resistant membrane by chemically cross-linking of polyimide membrane using polyethylenimine. This membrane showed excellent stability in almost all organic solvents. In addition, this membrane was positively charged due to the amine groups remaining on the surface. As a result, high efficiency (> 95%) and selectivity for multivalent heavy metal removal was achieved. (2) Fouling resistant NF membranes. Antifouling membranes are highly desired for “all” applications because fouling will lead to higher energy demand, increase of cleaning and corresponding down time and reduced life-time of the membrane elements. For fouling prevention, we designed a new membrane system using a coating technique to modify membrane surface properties to avoid adsorption of foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. The resultant membranes have a smooth and almost neutrally charged surface which showed better fouling resistance than both the positively charged NF membranes and commercially available negatively charged NTR-7450 membrane. In addition, these membranes showed high efficiency for removal of multivalent ions (> 95% for both cations and anions). Therefore, these antifouling surfaces can be potentially used for water softening, water desalination and wastewater treatment in a membrane bioreactor (MBR) process. (3) Thermally stable RO membranes. Commercial RO membranes cannot be used at temperature higher than 45°C due to the use of polysulfone substrate, which often limits their applications in industries. We successfully developed polyimides as the membrane substrate for thermally stable RO membranes due to their high thermal resistance. The polyimide-based composite polyamide membranes showed desalination performance comparable to the commercial TFC membrane. However, the key advantage of the polyimide-based membrane is its high thermal stability. As the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times while the salt rejection almost kept constant. This membrane appears to provide a unique solution for hot water desalination and also a feasible way to improve the water productivity by increasing the operating temperature without any drop in salt rejection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: The current study was designed to determine the effect of home-based treadmill training on epicardial and abdominal adipose tissue in postmenopausal women with metabolic syndrome (MS). A secondary objective was to identify significant correlations between imaging and conventional anthropometric parameters. Material and methods: Sixty postmenopausal women with MS volunteered for the current trial. Thirty were randomly assigned to perform a supervised home-based 16-week treadmill training program, 3 sessions/week, consisting of a warm-up, 30-40 min treadmill exercise (increasing 5-minutes each 4-weeks) at a work intensity of 60-75% of peak heart rate (increasing 5% each 4-weeks) and cooling-down. Epicardial fat thickness (EFT) was assessed by echocardiography. Abdominal fat mass in the lumbar regions L1-L4 and L4-L5 was determined by dual X-ray absorptiometry. Results: Epicardial fat thickness and abdominal fat percentages were significantly improved after the completion of the training program. Another striking feature of the current study was the moderate correlation that was found between EFT and waist circumference (WC). Conclusion: Home-based treadmill training reduced epicardial and abdominal fat in postmenopausal women with MS. A secondary finding was that a moderate correlation was found between EFT and WC. While current investigations are promising, future studies are still required to consolidate this approach in clinical application.