929 resultados para Conventional methodologies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to present a systematized review of different methods used to evaluate the masticatory efficiency in conventional complete denture wearers. A survey was conducted in the databases PubMed, Scopus, and Cochrane, seeking scientific articles according to the previously selected terms: "Masticatory performance", "Masticatory efficiency" and "Chewing ability complete denture". Moreover, complementary studies have been carried out with library manual search/databases, which included studies related to different ways to assess masticatory efficiency, specifically as it related to conventional complete denture wearers. Forty three papers were selected to be used in the present review. Despite the wide variety of methodologies in the literature, the sieves method is currently considered the gold standard method to evaluation of conventional complete denture wearers masticatory efficiency, since it is the simplest, does not depend on specific devices (beyond the set of sieves), allows for a rational assessment, and it has been widely reproduced in various types of oral rehabilitation. More, the almond, as natural test food, and the optocal (made from the molding material Optosil), as artificial test food, are the most constantly employed test foods to evaluate masticatory efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following Ph.D work was mainly focused on catalysis, as a key technology, to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and an assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry was briefly discussed and illustrated via an analysis of some selected and relevant examples. Afterwards, as a continuation of the ongoing interest in Dr. Marco Bandini’s group on organometallic and organocatalytic processes, I addressed my efforts to the design and development of novel catalytic green methodologies for the synthesis of enantiomerically enriched molecules. In the first two projects the attention was focused on the employment of solid supports to carry out reactions that still remain a prerogative of omogeneous catalysis. Firstly, particular emphasis was addressed to the discovery of catalytic enantioselective variants of nitroaldol condensation (commonly termed Henry reaction), using a complex consisting in a polyethylene supported diamino thiopene (DATx) ligands and copper as active species. In the second project, a new class of electrochemically modified surfaces with DATx palladium complexes was presented. The DATx-graphite system proved to be efficient in promoting the Suzuki reaction. Moreover, in collaboration with Prof. Wolf at the University of British Columbia (Vancouver), cyclic voltammetry studies were reported. This study disclosed new opportunities for carbon–carbon forming processes by using heterogeneous, electrodeposited catalyst films. A straightforward metal-free catalysis allowed the exploration around the world of organocatalysis. In fact, three different and novel methodologies, using Cinchona, Guanidine and Phosphine derivatives, were envisioned in the three following projects. An interesting variant of nitroaldol condensation with simple trifluoromethyl ketones and also their application in a non-conventional activation of indolyl cores by Friedel-Crafts-functionalization, led to two novel synthetic protocols. These approaches allowed the preparation of synthetically useful trifluoromethyl derivatives bearing quaternary stereocenters. Lastly, in the sixth project the first γ-alkylation of allenoates with conjugated carbonyl compounds was envisioned. In the last part of this Ph.D thesis bases on an extra-ordinary collaboration with Prof. Balzani and Prof. Gigli, I was involved in the synthesis and characterization of a new type of heteroleptic cyclometaled-Ir(III) complexes, bearing bis-oxazolines (BOXs) as ancillary ligands. The new heteroleptic complexes were fully characterized and in order to examine the electroluminescent properties of FIrBOX(CH2), an Organic Light Emitting Device was realized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been demonstrated that iodine does have an important influence on atmospheric chemistry, especially the formation of new particles and the enrichment of iodine in marine aerosols. It was pointed out that the most probable chemical species involved in the production or growth of these particles are iodine oxides, produced photochemically from biogenic halocarbon emissions and/or iodine emission from the sea surface. However, the iodine chemistry from gaseous to particulate phase in the coastal atmosphere and the chemical nature of the condensing iodine species are still not understood. A Tenax / Carbotrap adsorption sampling technique and a thermo-desorption / cryo-trap / GC-MS system has been further developed and improved for the volatile organic iodine species in the gas phase. Several iodo-hydrocarbons such as CH3I, C2H5I, CH2ICl, CH2IBr and CH2I2 etc., have been measured in samples from a calibration test gas source (standards), real air samples and samples from seaweeds / macro-algae emission experiments. A denuder sampling technique has been developed to characterise potential precursor compounds of coastal particle formation processes, such as molecular iodine in the gas phase. Starch, TMAH (TetraMethylAmmonium Hydroxide) and TBAH (TetraButylAmmonium Hydroxide) coated denuders were tested for their efficiencies to collect I2 at the inner surface, followed by a TMAH extraction and ICP/MS determination, adding tellurium as an internal standard. The developed method has been proved to be an effective, accurate and suitable process for I2 measurement in the field, with the estimated detection limit of ~0.10 ng∙L-1 for a sampling volume of 15 L. An H2O/TMAH-Extraction-ICP/MS method has been developed for the accurate and sensitive determination of iodine species in tropospheric aerosol particles. The particle samples were collected on cellulose-nitrate filters using conventional filter holders or on cellulose nitrate/tedlar-foils using a 5-stage Berner impactor for size-segregated particle analysis. The water soluble species as IO3- and I- were separated by anion exchanging process after water extraction. Non-water soluble species including iodine oxide and organic iodine were digested and extracted by TMAH. Afterwards the triple samples were analysed by ICP/MS. The detection limit for particulate iodine was determined to be 0.10~0.20 ng•m-3 for sampling volumes of 40~100 m3. The developed methods have been used in two field measurements in May 2002 and September 2003, at and around the Mace Head Atmospheric Research Station (MHARS) located at the west coast of Ireland. Elemental iodine as a precursor of the iodine chemistry in the coastal atmosphere, was determined in the gas phase at a seaweed hot-spot around the MHARS, showing I2 concentrations were in the range of 0~1.6 ng∙L-1 and indicating a positive correlation with the ozone concentration. A seaweed-chamber experiment performed at the field measurement station showed that the I2 emission rate from macro-algae was in the range of 0.019~0.022 ng•min-1•kg-1. During these experiments, nanometer-particle concentrations were obtained from the Scanning Mobility Particle Sizer (SMPS) measurements. Particle number concentrations were found to have a linear correlation with elemental iodine in the gas phase of the seaweeds chamber, showing that gaseous I2 is one of the important precursors of the new particle formation in the coastal atmosphere. Iodine contents in the particle phase were measured in both field campaigns at and around the field measurement station. Total iodine concentrations were found to be in the range of 1.0 ~ 21.0 ng∙m-3 in the PM2.5 samples. A significant correlation between the total iodine concentrations and the nanometer-particle number concentrations was observed. The particulate iodine species analysis indicated that iodide contents are usually higher than those of iodate in all samples, with ratios in the range of 2~5:1. It is possible that those water soluble iodine species are transferred through the sea-air interface into the particle phase. The ratio of water soluble (iodate + iodide) and non-water soluble species (probably iodine oxide and organic iodine compounds) was observed to be in the range of 1:1 to 1:2. It appears that higher concentrated non-water soluble species, as the products of the photolysis from the gas phase into the particle phase, can be obtained in those samples while the nucleation events occur. That supports the idea that iodine chemistry in the coastal boundary layer is linked with new particle formation events. Furthermore, artificial aerosol particles were formed from gaseous iodine sources (e.g. CH2I2) using a laboratory reaction-chamber experiment, in which the reaction constant of the CH2I2 photolysis was calculated to be based upon the first order reaction kinetic. The end products of iodine chemistry in the particle phase were identified and quantified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on the use of metabonomics applications in measuring fish freshness in various biological species and in evaluating how they are stored. This metabonomic approach is innovative and is based upon molecular profiling through nuclear magnetic resonance (NMR). On one hand, the aim is to ascertain if a type of fish has maintained, within certain limits, its sensory and nutritional characteristics after being caught; and on the second, the research observes the alterations in the product’s composition. The spectroscopic data obtained through experimental nuclear magnetic resonance, 1H-NMR, of the molecular profiles of the fish extracts are compared with those obtained on the same samples through analytical and conventional methods now in practice. These second methods are used to obtain chemical indices of freshness through biochemical and microbial degradation of the proteic nitrogen compounds and not (trimethylamine, N-(CH3)3, nucleotides, amino acids, etc.). At a later time, a principal components analysis (PCA) and a linear discriminant analysis (PLS-DA) are performed through a metabonomic approach to condense the temporal evolution of freshness into a single parameter. In particular, the first principal component (PC1) under both storage conditions (4 °C and 0 °C) represents the component together with the molecular composition of the samples (through 1H-NMR spectrum) evolving during storage with a very high variance. The results of this study give scientific evidence supporting the objective elements evaluating the freshness of fish products showing those which can be labeled “fresh fish.”

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Customer Satisfaction Surveys (CSS) have become an important tool for public transport planners, as improvements in the perceived quality of service lead to greater use of public transport and lower traffic pollution. Until now, Intelligent Transportation System (ITS) enhancements in public transport have traditionally included fleet management systems based on Automatic Vehicle Location (AVL) technologies, which can be used to optimize routing and scheduling, and to feed real-time information into passenger information channels. However, surveys of public transport users could also benefit from the new information technologies. As most customers carry their smartphones when traveling, Quick Response (QR) codes open up the possibility of conducting these surveys at a lower cost.This paper contributes to the limited existing literature by developing the analysis of QR codes applied to CSS in public transport and highlighting their importance in reducing the cost of data collection and processing. The added value of this research is that it provides the first assessment of a real case study in Madrid (Spain) using QR codes for this purpose. This pilot experience was part of a research project analyzing bus service quality in the same case study, so the QR code survey (155 valid questionnaires) was validated using a conventional face-to-face survey (520 valid questionnaires). The results show clearly that, after overcoming a few teething troubles, this QR code application will ultimately provide transport management with a useful tool to reduce survey costs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in interactive technologies have seen major changes in the manner in which artists, performers, and creative individuals interact with digital music technology; this is due to the increasing variety of interactive technologies that are readily available today. Digital Musical Instruments (DMIs) present musicians with performance challenges that are unique to this form of computer music. One of the most significant deviations from conventional acoustic musical instruments is the level of physical feedback conveyed by the instrument to the user. Currently, new interfaces for musical expression are not designed to be as physically communicative as acoustic instruments. Specifically, DMIs are often void of haptic feedback and therefore lack the ability to impart important performance information to the user. Moreover, there currently is no standardised way to measure the effect of this lack of physical feedback. Best practice would expect that there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the functionality, usability, and user experience of DMIs. Earlier theoretical and technological applications of haptics have tried to address device performance issues associated with the lack of feedback in DMI designs and it has been argued that the level of haptic feedback presented to a user can significantly affect the user’s overall emotive feeling towards a musical device. The outcome of the investigations contained within this thesis are intended to inform new haptic interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis deals with three different topics: i) sulfoxonium ylides, ii) donor-acceptor cyclopropanes, and iii) desymmetrization reactions. Catalysis, and in more detail organocatalysis, is the fil rouge linking the three subjects of study. The main focus treated during this doctorate period is the reactivity of sulfoxonium ylides, and in particular stabilized sulfoxonium ylides. Special attention has been dedicated to the behavior of these particular substrates under asymmetric and non-asymmetric reaction conditions. Moreover, also similarities and differences with the related, less stable, sulfonium ylides were fully analyzed, both experimentally and from a theoretical point of view. Two different reactions were developed in full. One conducted under acidic reaction conditions and the second one exploiting the asymmetric aminocatalysis. Subsequently, the reactivity of donor-acceptor cyclopropanes was studied. After different attempts in the development of a new catalytic methodology based on these substrates, a non-conventional reactivity conducted under phase transfer catalysis was discovered and optimized. In particular, a chemodivergent reaction depending on the reaction conditions was developed. Finally, during the period spent abroad, a preliminary study of a desymmetrization reaction was carried out. The studied reaction is based on an asymmetric elimination reaction conducted under asymmetric phosphoric acid catalysis. In summary, this PhD thesis shows the versatility of different organocatalytic methodologies when applied to different reactions and substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For centuries, specific instruments or regular toothbrushes have routinely been used to remove tongue biofilm and improve breath odor. Toothbrushes with a tongue scraper on the back of their head have recently been introduced to the market. The present study compared the effectiveness of a manual toothbrush with this new design, i.e., possessing a tongue scraper, and a commercial tongue scraper in improving breath odor and reducing the aerobic and anaerobic microbiota of tongue surface. The evaluations occurred at 4 moments, when the participants (n=30) had their halitosis quantified with a halimeter and scored according to a 4-point scoring system corresponding to different levels of intensity. Saliva was collected for counts of aerobic and anaerobic microorganisms. Data were analyzed statistically by Friedman's test (p<0.05). When differences were detected, the Wilcoxon test adjusted for Bonferroni correction was used for multiple comparisons (group to group). The results confirmed the importance of mechanical cleaning of the tongue, since this procedure provided an improvement in halitosis and reduction of aerobe and anaerobe counts. Regarding the evaluated methods, the toothbrush's tongue scraper and conventional tongue scraper had a similar performance in terms of breath improvement and reduction of tongue microbiota, and may be indicated as effective methods for tongue cleaning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This in vivo study evaluated the dissociation quality of maxillary premolar roots combining variations of vertical and horizontal angulations by using X-ray holders (Rinn -XCP), and made a comparison between two types of intraoral radiography systems - conventional film (Kodak Insight, Rochester, USA) and digital radiography (Kodak RVG 6100, Kodak, Rochester, USA). The study sample was comprised of 20 patients with a total of 20 maxillary premolars that were radiographed, using the paralleling angle technique (GP), with a 20º variation of the horizontal angle (GM) and 25º variation of the horizontal angle combined with 15º vertical angle (GMV). Each image was independently analyzed by two experienced examiners. These examiners assigned a score to the diagnostic capability of root dissociation and the measurement of the distance between the apexes. Statistical data was derived using the Wilcoxon Signed Rank test, Friedman and T test. The means of the measured distances between buccal and lingual root apexes were greater for the GMV, which ranged from 2.3 mm to 3.3 mm. A statistically significant difference was found between GM and GMV when compared to GP with p < 0.01. An established best diagnostic dissociation roots image was found in the GMV. These results support the use of the anterior X-ray holders which offer a better combined deviation (GMV) to dissociate maxillary premolar roots in both radiography systems.