987 resultados para Contaminated sites policy
Resumo:
Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22 000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits.
Resumo:
Acacia mangium and Mimosa caesalpiniaefolia are fast-growing woody fabaceous species that might be suitable for phytoremediation of arsenic (As)-contaminated sites. To date, few studies on their tolerance to As toxicity have been published. Therefore, this study assessed As toxicity symptoms in A. mangium and M. caesalpiniaefolia seedlings under As stress in a greenhouse. Seedlings of Acacia mangium and M. caesalpiniaefolia were grown for 120 d in an Oxisol-sand mixture with 0, 50, 100, 200, and 400 mg kg-1 As, in four replications in four randomized blocks. The plants were assessed for visible toxicity symptoms, dry matter production, shoot/root ratio, root anatomy and As uptake. Analyses of variance and regression showed that the growth of A. mangium and M. caesalpiniaefolia was severely hindered by As, with a reduction in dry matter production of more than 80 % at the highest As rate. The root/shoot ratio increased with increasing As rates. At a rate of 400 mg kg-1 As, whitish chlorosis appeared on Mimosa caesalpiniaefolia seedlings. The root anatomy of both species was altered, resulting in cell collapse, death of root buds and accumulation of phenolic compounds. Arsenic concentration was several times greater in roots than in shoots, with more than 150 and 350 mg kg-1 in M. caesalpiniaefolia and A. mangium roots, respectively. These species could be suitable for phytostabilization of As-contaminated sites, but growth-stimulating measures should be used.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate environmental data collected at former farm equipment manufacturing facility located in Charles City, Iowa. The site, most recently operated by Allied Products Corporation, is a 70-acre site located at 13th Street and E Street in Charles City, Iowa (Figure 1). The site is undergoing a Targeted Brownfields Assessment conducted by the Contaminated Sites Section of the IDNR. This health consultation addresses potential health risks to people from future exposure to the soil within the property boundary, and any health impacts resulting from contaminated groundwater beneath the site property. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
This letter has been prepared as a consultation to evaluate human health impacts from the use of private drinking water wells in Clinton County, Iowa. These wells are located just to the west of Highway 67 and Camanche, Iowa and near 9th Street, 31st Avenue, and 37th Avenue. The wells are also located to the south of contaminated sites known as Chemplex and PCS Nitrogen, and near former disposal areas known as Todtz Landfill and Doty Landfill. The Iowa Department of Public Health’s priority is to ensure the Clinton County community has the best information possible to safeguard its health. That information is included in the following paragraphs.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program evaluate future health impacts of exposures at the formerly utilized Chicago Milwaukee St. Paul Rail Yard located on the west side of Perry, Iowa. This site has undergone a Targeted Brownfields Assessment conducted by the Contaminated Sites Section of the IDNR. This health consultation assesses potential health risks to people from future exposure to soil and surface water within the property boundary, and any health impacts resulting from contaminated groundwater beneath the site property from an evaluation of the data collected during the Targeted Brownfields Assessment. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate future health impacts of exposures at the formerly utilized IBP Inc./Tire Chop facility located at 1525 “O” Avenue, Fort Dodge, Iowa. This site has undergone a Targeted Brownfields Assessment conducted by the Contaminated Sites Section of the IDNR. This health consultation addresses potential health risks to people from future exposure to soil within the property boundary, and any health impacts resulting from contaminated groundwater beneath the site property from an evaluation of the data collected during the Targeted Brownfields Assessment. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program evaluate future health impacts of exposures at a former aboveground storage tank site located in Rolfe, Iowa. The former aboveground storage tank site is located to the southwest of the intersection of Railroad Street and 300th Avenue in Rolfe, Iowa. This site is undergoing a Targeted Brownfields Assessment conducted by the Contaminated Sites Section of the IDNR. This health consultation addresses potential health risks to people from future exposure to the soil within the property boundary, and any health impacts resulting from contaminated groundwater beneath the site property. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.
Resumo:
Conference publication in Kalmar ECO-TECH’07. International Conference on Technologies for Waste and Wastewater Treatment, Energy from Waste, Remediation of Contaminated Sites and Emissions Related to Climate November 26-28 2007, Kalmar, Sweden.
Resumo:
Conventional technology used in the treatment of wastewater has been pointed as a major environmental problem for sustainable development, since minimization is not addressed accordingly. Advanced oxidation processes (AOP), based on the formation of hydroxyl radical (OH), a powerful oxidant agent, have been considered to be a potential technology for the destruction of many toxic compounds. Photocatalysis using solar light, an AOP, has been studied for nearly 20 years and recently attracted great interest as a clean-up technology. However, solar detoxification processes have not yet achieved commercial success. This article presents an overview of reaction mechanisms at the surface of semiconductors used as photocatalysts (specially TiO2), when heterogeneous photocatalysis is used to remove hazardous compounds from contaminated sites.
Resumo:
This study investigated the contamination of the Ribeira de Iguape River - RIR by Cd, Zn, Cr and Pb, using the bivalve Anodontites tenebricosus as a biomonitor. Metal concentrations in tissue samples were measured by HR-ICPMS. Bivalve tissues exhibited mean levels of 1.00 µg/g Cd; 152.89 µg/g Zn; 14.79 µg/g Cr and 4.40 µg/g Pb. Lead concentrations were comparable to those reported for moderately contaminated sites. The results showed that Pb is bioavailable to the bivalves, exhibiting high concentrations and exceeding both natural and reference values for human consumption. The freshwater bivalve Anodontites tenebricosus is a suitable biomonitor of contamination by metals.
Resumo:
Amorphous phosphate granules are present in vertebrate and invertebrate organisms. The functions attributed to these structures depend on their mineral contents and organic matrix composition. In the present study we have determined zinc concentrations in the hepatopancreas of the crab Ucides cordatus from regions contaminated with zinc, and the elemental composition of hepatopancreal phosphate granules. Organisms were collected from the contaminated areas of Sepetiba Bay (SB) and Guanabara Bay (GB), and from a non-contaminated area, Ribeira Bay (RB). The first two sites are located near the metropolitan region of Rio de Janeiro city, Brazil. Atomic absorption spectroscopy (AAS) showed a significant difference (P<0.05) for zinc concentration in the hepatopancreas from organisms collected at the contaminated sites GB (210 ± 20 µg/g dry weight) and SB (181 ± 16 µg/g dry weight) compared to the non-contaminated site RB (76 ± 14 µg/g dry weight). Phosphate granules isolated from hepatopancreatic tissue were studied by electron diffraction (ED), energy dispersive X-ray analysis (EDX) and electron spectroscopic imaging (ESI). ED of granules presented no diffraction spots, indicating that these structures are in an amorphous state, while EDX of granules isolated from a contaminated area contained P, Ca and Zn. Mg, Cl and Fe were also found in some of the spectra. ESI showed that O, P and Ca were colocalized in the mineralized layers of most granules observed. The correlation between the results obtained by AAS and those obtained by microanalytical techniques suggests that the hepatopancreatic granules of U. cordatus may be related to the phenomenon of heavy metal retention.
Resumo:
Les métaux lourds (ML) s’accumulent de plus en plus dans les sols à l’échelle mondiale, d’une part à cause des engrais minéraux et divers produits chimiques utilisés en agriculture intensive, et d’autre part à cause des activités industrielles. Toutes ces activités génèrent des déchets toxiques qui s’accumulent dans l’environnement. Les ML ne sont pas biodégradables et leur accumulation cause donc des problèmes de toxicité des sols et affecte la biodiversité des microorganismes qui y vivent. La fertilisation en azote (N) est une pratique courante en agriculture à grande échelle qui permet d’augmenter la fertilité des sols et la productivité des cultures. Cependant, son utilisation à long terme cause plusieurs effets néfastes pour l'environnement. Par exemple, elle augmente la quantité des ML dans les sols, les nappes phréatiques et les plantes. En outre, ces effets néfastes réduisent et changent considérablement la biodiversité des écosystèmes terrestres. La structure des communautés des champignons mycorhiziens à arbuscules (CMA) a été étudiée dans des sols contaminés par des ML issus de la fertilisation à long terme en N. Le rôle des différentes espèces de CMA dans l'absorption et la séquestration des ML a été aussi investigué. Dans une première expérience, la structure des communautés de CMA a été analysée à partir d’échantillons de sols de sites contaminés par des ML et de sites témoins non-contaminés. Nous avons constaté que la diversité des CMA indigènes a été plus faible dans les sols et les racines des plantes récoltées à partir de sites contaminés par rapport aux sites noncontaminés. Nous avons également constaté que la structure de la communauté d'AMF a été modifiée par la présence des ML dans les sols. Certains ribotypes des CMA ont été plus souvent associés aux sites contaminés, alors que d’autres ribotypes ont été associés aux sites non-contaminés. Cependant, certains ribotypes ont été observés aussi bien dans les sols pollués que non-pollués. Dans une deuxième expérience, les effets de la fertilisation organique et minérale (N) sur les différentes structures des communautés des CMA ont été étudiés. La variation de la structure de la communauté de CMA colonisant les racines a été analysée en fonction du type de fertilisation. Certains ribotypes de CMA étaient associés à la fertilisation organique et d'autres à la fertilisation minérale. En revanche, la fertilisation minérale a réduit le nombre de ribotypes de CMA alors que la fertilisation organique l’a augmenté. Dans cette expérience, j’ai démontré que le changement de structure des communautés de CMA colonisant des racines a eu un effet significatif sur la productivité des plantes. Dans une troisième expérience, le rôle de deux espèces de CMA (Glomus irregulare et G. mosseae) dans l'absorption du cadmium (Cd) par des plants de tournesol cultivés dans des sols amendés avec trois niveaux différents de Cd a été évalué. J’ai démontré que les deux espèces de CMA affectent différemment l’absorption ou la séquestration de ce ML par les plants de tournesol. Cette expérience a permis de mieux comprendre le rôle potentiel des CMA dans l'absorption des ML selon la concentration de cadmium dans le sol et les espèces de CMA. Mes recherches de doctorat démontrent donc que la fertilisation en N affecte la structure des communautés des CMA dans les racines et le sol. Le changement de structure de la communauté de CMA colonisant les racines affecte de manière significative la productivité des plantes. J’ai aussi démontré que, sous nos conditions expériemntales, l’espèce de CMA G. irregulare a été observée dans tous les sites (pollués et non-pollués), tandis que le G. mosseae n’a été observé en abondance que dans les sites contaminés. Par conséquent, j’ai étudié le rôle de ces deux espèces (G. irregulare et G. mosseae) dans l'absorption du Cd par le tournesol cultivé dans des sols amendés avec trois différents niveaux de Cd en serre. Les résultats indiquent que les espèces de CMA ont un potentiel différent pour atténuer la toxicité des ML dans les plantes hôtes, selon le niveau de concentration en Cd. En conclusion, mes travaux suggèrent que le G. irregulare est une espèce potentiellement importante pour la phytoextration du Cd, alors que le G. mosseae pourrait être une espèce appropriée pour phytostabilisation du Cd et du Zn.
Resumo:
The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.
Resumo:
Biosurfactants are surface active compounds released by microorganisms. They are biodegradable non-toxic and eco-friendly materials. In this review we have updated the information about different microbial surfactants. The biosurfactant production depends on the fermentation conditions, environmental factors and nutrient availability. The extraction of the biosurfactants from the cell-free supernatant using the solvent extraction procedure and the qualitative and quantitative analysis has been discussed with appropriate equipment details. The application of the biosurfactant includes biomedical, cosmetic and bioremediation. The type of microbial biosurfactants include trehalose lipids, rhamnolipids, sophorolipids, glycolipids, cellobiose lipids, polyol lipids, diglycosyl diglycerides, lipoloysaccharides, arthrofactin, lichensyn A and B, surfactin, viscosin, phospholipids, sulphonyl lipids and fatty acids. Rhamnolipid biosurfactants produced by Pseudomonas aeruginosa DS10-129 showed significant applications in the bioremediation of hydrocarbons in gasoline spilled soil and petroleum oily sludge. Rhamnolipid biosurfactant enhanced the bioremediation process by releasing the weathered oil from the soil matrices and enhanced the bioavailability of hydrocarbons for microbial degradation. It is having potential applications in the remediation of hydrocarbon contaminated sites. Biosurfactants from marine microorganisms also offer great potential in bioremediation of oil contaminated oceanic environments