960 resultados para Containing Superoxide-dismutase
Resumo:
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Resumo:
Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Superoxide radical (O2-) is a free radical that may be involved in various toxic processes. Cu-Zn superoxide dismutase catalyses the dismutation of the superoxide free radical and protects cells from oxidative damage, and it has been used clinically. The concentration of Ni2+ and Cu-Zn superoxide dismutase activity were measured in lungs of rats at time intervals of 5, 12, 19, 26, 33, and 40 days following an intratracheal injection of 127 nmol of NiCl2. Nickel chloride increased nickel content and resulted in a significant increase of Cu-Zn superoxide dismutase activity in lungs. This elevation of Cu-Zn superoxide dismutase activity was highest on the 12th day (approximately threefold) and is at levels comparable to controls rats on day 40 onwards. Since Cu-Zn superoxide dismutase activity was increased in lung throughout our experimental period without corresponding increases of Cu2+ and Zn2+, we speculate that the elevation of Cu-Zn superoxide dismutase activity might be due to an increased half-life of the enzyme, induced by nickel.
Resumo:
The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.
The characterization of a thermostable and cambialistic superoxide dismutase from thermus filiformis
Resumo:
The superoxide dismutase (TfSOD) gene from the extremely thermophilic bacterium Thermus filiformis was cloned and expressed at high levels in mesophilic host. The purified enzyme displayed approximately 25 kDa band in the SDS-PAGE, which was further confirmed as TfSOD by mass spectrometry. The TfSOD was characterized as a cambialistic enzyme once it had enzymatic activity with either manganese or iron as cofactor. TfSOD showed thermostability at 65, 70 and 80°C. The amount of enzyme required to inhibit 50% of pyrogallol autoxidation was 0·41, 0·56 and 13·73 mg at 65, 70 and 80°C, respectively. According to the circular dichroism (CD) spectra data, the secondary structure was progressively lost after increasing the temperature above 70°C. The 3-dimensional model of TfSOD with the predicted cofactor binding corroborated with functional and CD analysis. © 2013 The Society for Applied Microbiology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Superoxide dismutases (SODS; EC 1.15.1.1) are part of the antioxidant system of aerobic organisms and are used as a defense against oxidative injury caused by reactive oxygen species (ROS). The cloning and sequencing of the 788-bp genomic DNA from Trichoderma reesei strain QM9414 (anamorph of Hypocrea jecorina) revealed an open reading frame encoding a protein of 212 amino acid residues, with 65-90% similarity to manganese superoxide dismutase from other filamentous fungi. The TrMnSOD was purified and shown to be stable from 20 to 90 degrees C for 1 h at pH from 8 to 11.5, while maintaining its biological activity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cytosolic CuZn-SOD (SOD1) is a dimeric, carbohydrate-free enzyme with a molecular weight of about 32 kDa and also circulates in human blood plasma. Due to its molecular mass it has been believed that the enzyme cannot penetrate the cell membrane. Here we report that rapid endocytosis of FITC-CuZn-SOD into human endothelial cells occurs within 5 min. Moreover, relaxation of rat aortic rings in response to CuZn-SOD is associated with a lag time of 45-60 s and only observed in the presence of intact endothelial cells. The results indicate acute and rapid endothelial cell endocytosis of CuZn-SOD, possibly via activation of a receptor-mediated pathway. Intracellular uptake via endocytosis may contribute to the vascular effects of CuZn-SOD, including vasodilation, and is likely to play a role in regulation of vascular tone and diseases such as atherosclerosis.
Resumo:
Chronic alcohol consumption is a major risk factor for the development of chronic pancreatitis. However, chronic pancreatitis occurs only in a minority of heavy drinkers. This variability may be due to yet unidentified genetic factors. Several enzymes involved in the degradation of reactive oxidants and xenobiotics, such as glutathione-S-transferase P1 (GSTP1) and manganese-superoxide dismutase (MnSOD) reveal functional polymorphisms that affect the antioxidative capacity and may therefore modulate the development of chronic pancreatitis and long-term complications like endocrine and exocrine pancreatic insufficiency. Two functional polymorphisms of the MnSOD and the GSTP1 gene were assessed by polymerase chain reaction and restriction fragment length polymorphism in 165 patients with chronic alcoholic pancreatitis, 140 alcoholics without evidence of pancreatic disease and 160 healthy control subjects. The distribution of GSTP1 and MnSOD genotypes were in Hardy-Weinberg equilibrium in the total cohort. Genotype and allele frequencies for both genes were not statistically different between the three groups. Although genotype MnSOD Ala/Val was seemingly associated with the presence of exocrine pancreatic insufficiency, this subgroup was too small and the association statistically underpowered. None of the tested genotypes affected the development of endocrine pancreatic insufficiency. Polymorphisms of MnSOD and GSTP1 are not associated with chronic alcoholic pancreatitis. The present data emphasize the need for stringently designed candidate gene association studies with well-characterized cases and controls and sufficient statistical power to exclude chance observations.
Resumo:
Superoxide and superoxide-derived oxidants have been hypothesized to be important mediators of postischemic injury. Whereas copper,zinc-superoxide dismutase, SOD1, efficiently dismutates superoxide, there has been controversy regarding whether increasing intracellular SOD1 expression would protect against or potentiate cellular injury. To determine whether increased SOD1 protects the heart from ischemia and reperfusion, studies were performed in a newly developed transgenic mouse model in which direct measurement of superoxide, contractile function, bioenergetics, and cell death could be performed. Transgenic mice with overexpression of human SOD1 were studied along with matched nontransgenic controls. Immunoblotting and immunohistology demonstrated that total SOD1 expression was increased 10-fold in hearts from transgenic mice compared with nontransgenic controls, with increased expression in both myocytes and endothelial cells. In nontransgenic hearts following 30 min of global ischemia a reperfusion-associated burst of superoxide generation was demonstrated by electron paramagnetic resonance spin trapping. However, in the transgenic hearts with overexpression of SOD1 the burst of superoxide generation was almost totally quenched, and this was accompanied by a 2-fold increase in the recovery of contractile function, a 2.2-fold decrease in infarct size, and a greatly improved recovery of high energy phosphates compared with that in nontransgenic controls. These results demonstrate that superoxide is an important mediator of postischemic injury and that increasing intracellular SOD1 dramatically protects the heart from this injury. Thus, increasing intracellular SOD1 expression may be a highly effective approach to decrease the cellular injury that occurs following reperfusion of ischemic tissues.
Resumo:
Amyotrophic lateral sclerosis (ALS) involves the progressive degeneration of motor neurons in the spinal cord and motor cortex. Mutations to Cu,Zn superoxide dismutase (SOD) linked with familial ALS are reported to increase hydroxyl radical adduct formation from hydrogen peroxide as measured by spin trapping with 5,5′-dimethyl-1-pyrrolline N-oxide (DMPO). In the present study, we have used oxygen-17-enriched water and H2O2 to reinvestigate the mechanism of DMPO/⋅OH formation from the SOD and SOD mutants. The relative ratios of DMPO/⋅17OH and DMPO/⋅16OH formed in the Fenton reaction were 90% and 10%, respectively, reflecting the ratios of H217O2 to H216O2. The reaction of the WT SOD with H217O2 in bicarbonate/CO2 buffer yielded 63% DMPO/⋅17OH and 37% DMPO/⋅16OH. Similar results were obtained from the reaction between familial ALS SOD mutants and H217O2: DMPO/⋅17OH (64%); DMPO/⋅16OH (36%) from A4V and DMPO/⋅17OH (62%); and DMPO/⋅16OH (38%) from G93A. These results were confirmed further by using 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide spin trap, a phosphorylated analog of DMPO. Contrary to earlier reports, the present results indicate that a significant fraction of DMPO/⋅OH formed during the reaction of SOD and familial ALS SOD mutants with H2O2 is derived from the incorporation of oxygen from water due to oxidation of DMPO to DMPO/⋅OH presumably via DMPO radical cation. No differences were detected between WT and mutant SODs, neither in the concentration of DMPO/⋅OH or DEPMPO/⋅OH formed nor in the relative incorporation of oxygen from H2O2 or water.
Resumo:
Copyright © 2015 Elsevier Ltd. All rights reserved. This research project was funded by NHS Grampian R&D (project number RG05/019).