932 resultados para Constraint-based routing
Resumo:
Grâce à leur flexibilité et à leur facilité d’installation, les réseaux maillés sans fil (WMNs) permettent un déploiement d’une infrastructure à faible coût. Ces réseaux étendent la couverture des réseaux filaires permettant, ainsi, une connexion n’importe quand et n’importe où. Toutefois, leur performance est dégradée par les interférences et la congestion. Ces derniers causent des pertes de paquets et une augmentation du délai de transmission d’une façon drastique. Dans cette thèse, nous nous intéressons au routage adaptatif et à la stabilité dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la conception d’une métrique de routage et à la sélection des passerelles permettant d’améliorer la performance des WMNs. Dans ce contexte nous proposons un protocole de routage à la source basé sur une nouvelle métrique. Cette métrique permet non seulement de capturer certaines caractéristiques des liens tels que les interférences inter-flux et intra-flux, le taux de perte des paquets mais également la surcharge des passerelles. Les résultats numériques montrent que la performance de cette métrique est meilleure que celle des solutions proposées dans la littérature. Dans une deuxième partie de la thèse, nous nous intéressons à certaines zones critiques dans les WMNs. Ces zones se trouvent autour des passerelles qui connaissent une concentration plus élevé du trafic ; elles risquent de provoquer des interférences et des congestions. À cet égard, nous proposons un protocole de routage proactif et adaptatif basé sur l’apprentissage par renforcement et qui pénalise les liens de mauvaise qualité lorsqu’on s’approche des passerelles. Un chemin dont la qualité des liens autour d’une passerelle est meilleure sera plus favorisé que les autres chemins de moindre qualité. Nous utilisons l’algorithme de Q-learning pour mettre à jour dynamiquement les coûts des chemins, sélectionner les prochains nœuds pour faire suivre les paquets vers les passerelles choisies et explorer d’autres nœuds voisins. Les résultats numériques montrent que notre protocole distribué, présente de meilleurs résultats comparativement aux protocoles présentés dans la littérature. Dans une troisième partie de cette thèse, nous nous intéressons aux problèmes d’instabilité des réseaux maillés sans fil. En effet, l’instabilité se produit à cause des changements fréquents des routes qui sont causés par les variations instantanées des qualités des liens dues à la présence des interférences et de la congestion. Ainsi, après une analyse de l’instabilité, nous proposons d’utiliser le nombre de variations des chemins dans une table de routage comme indicateur de perturbation des réseaux et nous utilisons la fonction d’entropie, connue dans les mesures de l’incertitude et du désordre des systèmes, pour sélectionner les routes stables. Les résultats numériques montrent de meilleures performances de notre protocole en comparaison avec d’autres protocoles dans la littérature en termes de débit, délai, taux de perte des paquets et l’indice de Gini.
Resumo:
A method is discussed for imposing any desired constraint on the force field obtained in a force constant refinement calculation. The application of this method to force constant refinement calculations for the methyl halide molecules is reported. All available data on the vibration frequencies, Coriolis interaction constants and centrifugal stretching constants of CH3X and CD3X molecules were used in the refinements, but despite this apparent abundance of data it was found that constraints were necessary in order to obtain a unique solution to the force field. The results of unconstrained calculations, and of three different constrained calculations, are reported in this paper. The constrained models reported are a Urey—Bradley force field, a modified valence force field, and a constraint based on orbital-following bond-hybridization arguments developed in the following paper. The results are discussed, and compared with previous results for these molecules. The third of the above models is found to reproduce the observed data better than either of the first two, and additional reasons are given for preferring this solution to the force field for the methyl halide molecules.
Resumo:
Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the last years, Intelligent Tutoring Systems have been a very successful way for improving learning experience. Many issues must be addressed until this technology can be defined mature. One of the main problems within the Intelligent Tutoring Systems is the process of contents authoring: knowledge acquisition and manipulation processes are difficult tasks because they require a specialised skills on computer programming and knowledge engineering. In this thesis we discuss a general framework for knowledge management in an Intelligent Tutoring System and propose a mechanism based on first order data mining to partially automate the process of knowledge acquisition that have to be used in the ITS during the tutoring process. Such a mechanism can be applied in Constraint Based Tutor and in the Pseudo-Cognitive Tutor. We design and implement a part of the proposed architecture, mainly the module of knowledge acquisition from examples based on first order data mining. We then show that the algorithm can be applied at least two different domains: first order algebra equation and some topics of C programming language. Finally we discuss the limitation of current approach and the possible improvements of the whole framework.
Resumo:
This thesis addresses the issue of generating texts in the style of an existing author, that also satisfy structural constraints imposed by the genre of the text. Although Markov processes are known to be suitable for representing style, they are difficult to control in order to satisfy non-local properties, such as structural constraints, that require long distance modeling. The framework of Constrained Markov Processes allows to precisely generate texts that are consistent with a corpus, while being controllable in terms of rhymes and meter. Controlled Markov processes consist in reformulating Markov processes in the context of constraint satisfaction. The thesis describes how to represent stylistic and structural properties in terms of constraints in this framework and how this approach can be used for the generation of lyrics in the style of 60 differents authors An evaluation of the desctibed method is provided by comparing it to both pure Markov and pure constraint-based approaches. Finally the thesis describes the implementation of an augmented text editor, called Perec. Perec is intended to improve creativity, by helping the user to write lyrics and poetry, exploiting the techniques presented so far.
Resumo:
La capacidad de comunicación de los seres humanos ha crecido gracias a la evolución de dispositivos móviles cada vez más pequeños, manejables, potentes, de mayor autonomía y más asequibles. Esta tendencia muestra que en un futuro próximo cercano cada persona llevaría consigo por lo menos un dispositivo de altas prestaciones. Estos dispositivos tienen incorporados algunas formas de comunicación: red de telefonía, redes inalámbricas, bluetooth, entre otras. Lo que les permite también ser empleados para la configuración de redes móviles Ad Hoc. Las redes móviles Ad Hoc, son redes temporales y autoconfigurables, no necesitan un punto de acceso para que los nodos intercambien información entre sí. Cada nodo realiza las tareas de encaminador cuando sea requerido. Los nodos se pueden mover, cambiando de ubicación a discreción. La autonomía de estos dispositivos depende de las estrategias de como sus recursos son utilizados. De tal forma que los protocolos, algoritmos o modelos deben ser diseñados de forma eficiente para no impactar el rendimiento del dispositivo, siempre buscando un equilibrio entre sobrecarga y usabilidad. Es importante definir una gestión adecuada de estas redes especialmente cuando estén siendo utilizados en escenarios críticos como los de emergencias, desastres naturales, conflictos bélicos. La presente tesis doctoral muestra una solución eficiente para la gestión de redes móviles Ad Hoc. La solución contempla dos componentes principales: la definición de un modelo de gestión para redes móviles de alta disponibilidad y la creación de un protocolo de enrutamiento jerárquico asociado al modelo. El modelo de gestión propuesto, denominado High Availability Management Ad Hoc Network (HAMAN), es definido en una estructura de cuatro niveles, acceso, distribución, inteligencia e infraestructura. Además se describen los componentes de cada nivel: tipos de nodos, protocolos y funcionamiento. Se estudian también las interfaces de comunicación entre cada componente y la relación de estas con los niveles definidos. Como parte del modelo se diseña el protocolo de enrutamiento Ad Hoc, denominado Backup Cluster Head Protocol (BCHP), que utiliza como estrategia de encaminamiento el empleo de cluster y jerarquías. Cada cluster tiene un Jefe de Cluster que concentra la información de enrutamiento y de gestión y la envía al destino cuando esta fuera de su área de cobertura. Para mejorar la disponibilidad de la red el protocolo utiliza un Jefe de Cluster de Respaldo el que asume las funciones del nodo principal del cluster cuando este tiene un problema. El modelo HAMAN es validado a través de un proceso la simulación del protocolo BCHP. El protocolo BCHP se implementa en la herramienta Network Simulator 2 (NS2) para ser simulado, comparado y contrastado con el protocolo de enrutamiento jerárquico Cluster Based Routing Protocol (CBRP) y con el protocolo de enrutamiento Ad Hoc reactivo denominado Ad Hoc On Demand Distance Vector Routing (AODV). Abstract The communication skills of humans has grown thanks to the evolution of mobile devices become smaller, manageable, powerful, more autonomy and more affordable. This trend shows that in the near future each person will carry at least one high-performance device. These high-performance devices have some forms of communication incorporated: telephony network, wireless networks, bluetooth, among others. What can also be used for configuring mobile Ad Hoc networks. Ad Hoc mobile networks, are temporary and self-configuring networks, do not need an access point for exchange information between their nodes. Each node performs the router tasks as required. The nodes can move, change location at will. The autonomy of these devices depends on the strategies of how its resources are used. So that the protocols, algorithms or models should be designed to efficiently without impacting device performance seeking a balance between overhead and usability. It is important to define appropriate management of these networks, especially when being used in critical scenarios such as emergencies, natural disasters, wars. The present research shows an efficient solution for managing mobile ad hoc networks. The solution comprises two main components: the definition of a management model for highly available mobile networks and the creation of a hierarchical routing protocol associated with the model. The proposed management model, called High Availability Management Ad Hoc Network (HAMAN) is defined in a four-level structure: access, distribution, intelligence and infrastructure. The components of each level: types of nodes, protocols, structure of a node are shown and detailed. It also explores the communication interfaces between each component and the relationship of these with the levels defined. The Ad Hoc routing protocol proposed, called Backup Cluster Head Protocol( BCHP), use of cluster and hierarchies like strategies. Each cluster has a cluster head which concentrates the routing information and management and sent to the destination when out of cluster coverage area. To improve the availability of the network protocol uses a Backup Cluster Head who assumes the functions of the node of the cluster when it has a problem. The HAMAN model is validated accross the simulation of their BCHP routing protocol. BCHP protocol has been implemented in the simulation tool Network Simulator 2 (NS2) to be simulated, compared and contrasted with a hierarchical routing protocol Cluster Based Routing Protocol (CBRP) and a routing protocol called Reactive Ad Hoc On Demand Distance Vector Routing (AODV).
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
En la última década ha aumentado en gran medida el interés por las redes móviles Ad Hoc. La naturaleza dinámica y sin infraestructura de estas redes, exige un nuevo conjunto de algoritmos y estrategias para proporcionar un servicio de comunicación fiable extremo a extremo. En el contexto de las redes móviles Ad Hoc, el encaminamiento surge como una de las áreas más interesantes para transmitir información desde una fuente hasta un destino, con la calidad de servicio de extremo a extremo. Debido a las restricciones inherentes a las redes móviles, los modelos de encaminamiento tradicionales sobre los que se fundamentan las redes fijas, no son aplicables a las redes móviles Ad Hoc. Como resultado, el encaminamiento en redes móviles Ad Hoc ha gozado de una gran atención durante los últimos años. Esto ha llevado al acrecentamiento de numerosos protocolos de encaminamiento, tratando de cubrir con cada uno de ellos las necesidades de los diferentes tipos de escenarios. En consecuencia, se hace imprescindible estudiar el comportamiento de estos protocolos bajo configuraciones de red variadas, con el fin de ofrecer un mejor encaminamiento respecto a los existentes. El presente trabajo de investigación muestra precisamente una solución de encaminamiento en las redes móviles Ad Hoc. Dicha solución se basa en el mejoramiento de un algoritmo de agrupamiento y la creación de un modelo de encaminamiento; es decir, un modelo que involucra la optimización de un protocolo de enrutamiento apoyado de un mecanismo de agrupación. El algoritmo mejorado, denominado GMWCA (Group Management Weighted Clustering Algorithm) y basado en el WCA (Weighted Clustering Algorithm), permite calcular el mejor número y tamaño de grupos en la red. Con esta mejora se evitan constantes reagrupaciones y que los jefes de clústeres tengan más tiempo de vida intra-clúster y por ende una estabilidad en la comunicación inter-clúster. En la tesis se detallan las ventajas de nuestro algoritmo en relación a otras propuestas bajo WCA. El protocolo de enrutamiento Ad Hoc propuesto, denominado QoS Group Cluster Based Routing Protocol (QoSG-CBRP), utiliza como estrategia el empleo de clúster y jerarquías apoyada en el algoritmo de agrupamiento. Cada clúster tiene un jefe de clúster (JC), quien administra la información de enrutamiento y la envía al destino cuando esta fuera de su área de cobertura. Para evitar que haya constantes reagrupamientos y llamados al algoritmo de agrupamiento se consideró agregarle un jefe de cluster de soporte (JCS), el que asume las funciones del JC, siempre y cuando este haya roto el enlace con los otros nodos comunes del clúster por razones de alejamiento o por desgaste de batería. Matemáticamente y a nivel de algoritmo se han demostrado las mejoras del modelo propuesto, el cual ha involucrado el mejoramiento a nivel de algoritmo de clustering y del protocolo de enrutamiento. El protocolo QoSG-CBRP, se ha implementado en la herramienta de simulación Network Simulator 2 (NS2), con la finalidad de ser comparado con el protocolo de enrutamiento jerárquico Cluster Based Routing Protocol (CBRP) y con un protocolo de enrutamiento Ad Hoc reactivo denominado Ad Hoc On Demand Distance Vector Routing (AODV). Estos protocolos fueron elegidos por ser los que mejor comportamiento presentaron dentro de sus categorías. Además de ofrecer un panorama general de los actuales protocolos de encaminamiento en redes Ad Hoc, este proyecto presenta un procedimiento integral para el análisis de capacidades de la propuesta del nuevo protocolo con respecto a otros, sobre redes que tienen un alto número de nodos. Estas prestaciones se miden en base al concepto de eficiencia de encaminamiento bajo parámetros de calidad de servicio (QoS), permitiendo establecer el camino más corto posible entre un nodo origen y un nodo destino. Con ese fin se han realizado simulaciones con diversos escenarios para responder a los objetivos de la tesis. La conclusiones derivadas del análisis de los resultados permiten evaluar cualitativamente las capacidades que presenta el protocolo dentro del modelo propuesto, al mismo tiempo que avizora un atractivo panorama en líneas futuras de investigación. ABSTRACT In the past decade, the interest in mobile Ad Hoc networks has greatly increased. The dynamic nature of these networks without infrastructure requires a new set of algorithms and strategies to provide a reliable end-to-end communication service. In the context of mobile Ad Hoc networks, routing emerges as one of the most interesting areas for transmitting information from a source to a destination, with the quality of service from end-to-end. Due to the constraints of mobile networks, traditional routing models that are based on fixed networks are not applicable to Ad Hoc mobile networks. As a result, the routing in mobile Ad Hoc networks has experienced great attention in recent years. This has led to the enhancement of many routing protocols, trying to cover with each one of them, the needs of different types of scenarios. Consequently, it is essential to study the behavior of these protocols under various network configurations, in order to provide a better routing scheme. Precisely, the present research shows a routing solution in mobile Ad Hoc networks. This solution is based on the improvement of a clustering algorithm, and the creation of a routing model, ie a model that involves optimizing a routing protocol with the support of a grouping mechanism. The improved algorithm called GMWCA (Group Management Weighted Clustering Algorithm) and based on the WCA (Weighted Clustering Algorithm), allows to calculate the best number and size of groups in the network. With this enhancement, constant regroupings are prevented and cluster heads are living longer intra-cluster lives and therefore stability in inter-cluster communication. The thesis details the advantages of our algorithm in relation to other proposals under WCA. The Ad Hoc routing protocol proposed, called QoS Group Cluster Based Routing Protocol (QoSG-CBRP), uses a cluster-employment strategy and hierarchies supported by the clustering algorithm. Each cluster has a cluster head (JC), who manages the routing information and sends it to the destination when is out of your coverage area. To avoid constant rearrangements and clustering algorithm calls, adding a support cluster head (JCS) was considered. The JCS assumes the role of the JC as long as JC has broken the link with the other nodes in the cluster for common restraining reasons or battery wear. Mathematically and at an algorithm level, the improvements of the proposed model have been showed, this has involved the improvement level clustering algorithm and the routing protocol. QoSG-CBRP protocol has been implemented in the simulation tool Network Simulator 2 (NS2), in order to be compared with the hierarchical routing protocol Cluster Based Routing Protocol (CBRP) and with the reactive routing protocol Ad Hoc On Demand Distance Vector Routing (AODV). These protocols were chosen because they showed the best individual performance in their categories. In addition to providing an overview of existing routing protocols in Ad Hoc networks, this project presents a comprehensive procedure for capacity analysis of the proposed new protocol with respect to others on networks that have a high number of nodes. These benefits are measured based on the concept of routing efficiency under the quality of service (QoS) parameters, thus allowing for the shortest possible path between a source node and a destination node. To meet the objectives of the thesis, simulations have been performed with different scenarios. The conclusions derived from the analysis of the results to assess qualitatively the protocol capabilities presented in the proposed model, while an attractive scenario for future research appears.
Resumo:
Las pruebas de software (Testing) son en la actualidad la técnica más utilizada para la validación y la evaluación de la calidad de un programa. El testing está integrado en todas las metodologías prácticas de desarrollo de software y juega un papel crucial en el éxito de cualquier proyecto de software. Desde las unidades de código más pequeñas a los componentes más complejos, su integración en un sistema de software y su despliegue a producción, todas las piezas de un producto de software deben ser probadas a fondo antes de que el producto de software pueda ser liberado a un entorno de producción. La mayor limitación del testing de software es que continúa siendo un conjunto de tareas manuales, representando una buena parte del coste total de desarrollo. En este escenario, la automatización resulta fundamental para aliviar estos altos costes. La generación automática de casos de pruebas (TCG, del inglés test case generation) es el proceso de generar automáticamente casos de prueba que logren un alto recubrimiento del programa. Entre la gran variedad de enfoques hacia la TCG, esta tesis se centra en un enfoque estructural de caja blanca, y más concretamente en una de las técnicas más utilizadas actualmente, la ejecución simbólica. En ejecución simbólica, el programa bajo pruebas es ejecutado con expresiones simbólicas como argumentos de entrada en lugar de valores concretos. Esta tesis se basa en un marco general para la generación automática de casos de prueba dirigido a programas imperativos orientados a objetos (Java, por ejemplo) y basado en programación lógica con restricciones (CLP, del inglés constraint logic programming). En este marco general, el programa imperativo bajo pruebas es primeramente traducido a un programa CLP equivalente, y luego dicho programa CLP es ejecutado simbólicamente utilizando los mecanismos de evaluación estándar de CLP, extendidos con operaciones especiales para el tratamiento de estructuras de datos dinámicas. Mejorar la escalabilidad y la eficiencia de la ejecución simbólica constituye un reto muy importante. Es bien sabido que la ejecución simbólica resulta impracticable debido al gran número de caminos de ejecución que deben ser explorados y a tamaño de las restricciones que se deben manipular. Además, la generación de casos de prueba mediante ejecución simbólica tiende a producir un número innecesariamente grande de casos de prueba cuando es aplicada a programas de tamaño medio o grande. Las contribuciones de esta tesis pueden ser resumidas como sigue. (1) Se desarrolla un enfoque composicional basado en CLP para la generación de casos de prueba, el cual busca aliviar el problema de la explosión de caminos interprocedimiento analizando de forma separada cada componente (p.ej. método) del programa bajo pruebas, almacenando los resultados y reutilizándolos incrementalmente hasta obtener resultados para el programa completo. También se ha desarrollado un enfoque composicional basado en especialización de programas (evaluación parcial) para la herramienta de ejecución simbólica Symbolic PathFinder (SPF). (2) Se propone una metodología para usar información del consumo de recursos del programa bajo pruebas para guiar la ejecución simbólica hacia aquellas partes del programa que satisfacen una determinada política de recursos, evitando la exploración de aquellas partes del programa que violan dicha política. (3) Se propone una metodología genérica para guiar la ejecución simbólica hacia las partes más interesantes del programa, la cual utiliza abstracciones como generadores de trazas para guiar la ejecución de acuerdo a criterios de selección estructurales. (4) Se propone un nuevo resolutor de restricciones, el cual maneja eficientemente restricciones sobre el uso de la memoria dinámica global (heap) durante ejecución simbólica, el cual mejora considerablemente el rendimiento de la técnica estándar utilizada para este propósito, la \lazy initialization". (5) Todas las técnicas propuestas han sido implementadas en el sistema PET (el enfoque composicional ha sido también implementado en la herramienta SPF). Mediante evaluación experimental se ha confirmado que todas ellas mejoran considerablemente la escalabilidad y eficiencia de la ejecución simbólica y la generación de casos de prueba. ABSTRACT Testing is nowadays the most used technique to validate software and assess its quality. It is integrated into all practical software development methodologies and plays a crucial role towards the success of any software project. From the smallest units of code to the most complex components and their integration into a software system and later deployment; all pieces of a software product must be tested thoroughly before a software product can be released. The main limitation of software testing is that it remains a mostly manual task, representing a large fraction of the total development cost. In this scenario, test automation is paramount to alleviate such high costs. Test case generation (TCG) is the process of automatically generating test inputs that achieve high coverage of the system under test. Among a wide variety of approaches to TCG, this thesis focuses on structural (white-box) TCG, where one of the most successful enabling techniques is symbolic execution. In symbolic execution, the program under test is executed with its input arguments being symbolic expressions rather than concrete values. This thesis relies on a previously developed constraint-based TCG framework for imperative object-oriented programs (e.g., Java), in which the imperative program under test is first translated into an equivalent constraint logic program, and then such translated program is symbolically executed by relying on standard evaluation mechanisms of Constraint Logic Programming (CLP), extended with special treatment for dynamically allocated data structures. Improving the scalability and efficiency of symbolic execution constitutes a major challenge. It is well known that symbolic execution quickly becomes impractical due to the large number of paths that must be explored and the size of the constraints that must be handled. Moreover, symbolic execution-based TCG tends to produce an unnecessarily large number of test cases when applied to medium or large programs. The contributions of this dissertation can be summarized as follows. (1) A compositional approach to CLP-based TCG is developed which overcomes the inter-procedural path explosion by separately analyzing each component (method) in a program under test, stowing the results as method summaries and incrementally reusing them to obtain whole-program results. A similar compositional strategy that relies on program specialization is also developed for the state-of-the-art symbolic execution tool Symbolic PathFinder (SPF). (2) Resource-driven TCG is proposed as a methodology to use resource consumption information to drive symbolic execution towards those parts of the program under test that comply with a user-provided resource policy, avoiding the exploration of those parts of the program that violate such policy. (3) A generic methodology to guide symbolic execution towards the most interesting parts of a program is proposed, which uses abstractions as oracles to steer symbolic execution through those parts of the program under test that interest the programmer/tester most. (4) A new heap-constraint solver is proposed, which efficiently handles heap-related constraints and aliasing of references during symbolic execution and greatly outperforms the state-of-the-art standard technique known as lazy initialization. (5) All techniques above have been implemented in the PET system (and some of them in the SPF tool). Experimental evaluation has confirmed that they considerably help towards a more scalable and efficient symbolic execution and TCG.
Resumo:
In the SESAR Step 2 concept of operations a RBT is available and seen by all making it possible to conceive a different operating method than the current ATM system based on Collaborative Decisions Making processes. Currently there is a need to describe in more detail the mechanisms by which actors (ATC, Network Management, Flight Crew, airports and Airline Operation Centre) will negotiate revisions to the RBT. This paper introduces a negotiation model, which uses constraint based programing applied to a mediator to facilitate negotiation process in a SWIM enabled environment. Three processes for modelling the negotiation process are explained as well a preliminary reasoning agent algorithm modelled with constraint satisfaction problem is presented. Computational capability of the model is evaluated in the conclusion.
Resumo:
This paper analyzes issues which appear when supporting pruning operators in tabled LP. A version of the once/1 control predicate tailored for tabled predicates is presented, and an implementation analyzed and evaluated. Using once/1 with answer-on-demand strategies makes it possible to avoid computing unneeded solutions for problems which can benefit from tabled LP but in which only a single solution is needed, such as model checking and planning. The proposed version of once/1 is also directly applicable to the efficient implementation of other optimizations, such as early completion, cut-fail loops (to, e.g., prune at the top level), if-then-else, and constraint-based branch-and-bound optimization. Although once/1 still presents open issues such as dependencies of tabled solutions on program history, our experimental evaluation confirms that it provides an arbitrarily large efficiency improvement in several application areas.
Resumo:
We present the idea of a programmable structured P2P architecture. Our proposed system allows the key-based routing infrastructure, which is common to all structured P2P overlays, to be shared by multiple applications. Furthermore, our architecture allows the dynamic and on-demand deployment of new applications and services on top of the shared routing layer.
Resumo:
Content Centric Network (CCN) is a proposed future internet architecture that is based on the concept of contents name instead of the hosts name followed in the traditional internet architecture. CCN architecture might do changes in the existing internet architecture or might replace it completely. In this paper, we present modifications to the existing Domain Name System (DNS) based on the CCN architecture requirements without changing the existing routing architecture. Hence the proposed solution achieves the benefits of both CCN and existing network infrastructure (i.e. content based routing, independent of host location, caching and content delivery protocols).
Resumo:
La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d’ordonnancement de grande envergure. L’ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d’un ordonnancement. Résoudre un problème d’ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l’exécuter. La plupart des problèmes d’ordonnancement sont NP-Difficiles. Conséquemment, il n’existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d’ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d’explorer ces algorithmes d’ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l’arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d’ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d’optimisation n’est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d’exécuter une tâche au temps t dépend de t.