968 resultados para Conquest of Mexico (1519-1540)
Resumo:
Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes. Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast of Alabama as part of a long-term biological survey. Four seasonal periods were identified from observed and historic water temperatures, including a relatively long (June–October) “summer” period (water temperature >26°C). Fish egg abundance, total larval abundance, and larval taxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring, spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 different families, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout (Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larval concentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence for these taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveys of Alabama and northern Gulf of Mexico seagrass habitats.
Resumo:
A description of the foraging habitat of a cetacean species is critical for conservation and effective management. We used a fine-scale microhabitat approach to examine patterns in bottlenose dolphin (Tursiops truncatus) foraging distribution in relation to dissolved oxygen, turbidity, salinity, water depth, water temperature, and distance from shore measurements in a highly turbid estuary on the northern Gulf of Mexico. In general, environmental variation in the Barataria Basin marine environment comprises three primary axes of variability (i.e., factors: temperature and dissolved oxygen, salinity and turbidity, and distance and depth) that represent seasonal, spatial-seasonal, and spatial scales, respectively. Foraging sites were differentiated from nonforaging sites by significant differences among group size, temperature, turbidity, and season. Habitat selection analysis on individual variables indicated that foraging was more frequently observed in waters 4–6 m deep, 200–500 m from shore, and at salinity values of around 20 psu. This fine-scale and multivariate approach represents a useful method of exploring the complexity, gradation, and detail of the relationships between environmental variables and the foraging distribution patterns of bottlenose dolphin.
Resumo:
We examined the effect of habitat and shrimp trawl bycatch on the density, size, growth, and mortality of inshore lizardfish (Synodus foetens), a nonexploited species that is among the most widespread and abundant benthic fishes in the north central Gulf of Mexico. Results of quarterly trawl sampling conducted from spring 2004 through spring 2005 revealed that inshore lizardfish are most abundant on sand habitat, but larger fish are more common on shell rubble habitat. There was no significant difference in fish density between habitats exposed to shrimp trawling on the open shelf versus those habitats within a permitted artificial reef zone that served as a de facto no-trawl area; this finding indicates that either inshore lizardfish experienced minimal effects from trawling or, more likely, that fish moved between trawled and nontrawled habitats. Exploitation ratio (bycatch mortality/total morality) estimates derived from catch curve analysis ranged from 0.43 inside the artificial reef zone to 0.55 outside the reef zone, thus indicating that inshore lizardfish are subject to significant fishing mortality in the north central Gulf of Mexico despite the lack of a directed fishery for the species. We infer from this result that effects of shrimp trawl bycatch may be significant at the population level for nonexploited species and that a broader ecosystem-scale examination of bycatch effects is warranted.
Resumo:
The red deepsea crab (Chaceon quinquedens (Smith, 1879)) has supported a commercial fishery off the coast of New England since the 1970s (Wigley et al., 1975) and has had annual harvests from 400 metric tons (t) (1996) to 4000 t (2001) (NEFMC, 2002). In 2002, a fishery management plan for the northeast fishery on the Atlantic coast was implemented and total allowable catch was reduced to approximately 2500 t (NEFMC, 2002). Although there are management plans for the golden crab (C. fenneri) and the red deep sea crab for Atlantic coast regions, there is no fishery management plan for red deepsea crabs in the Gulf of Mexico. Successful management for sustainable harvests should be based on a knowledge of the life history of the species, but C. quinquedens has been a difficult species for which to obtain life history and abundance information because of its deep distribution.
Resumo:
Molecular markers based on mitochondrial DNA (mtDNA) are extensively used to study genetic relationships. mtDNA has been used in phylogenetic studies to understand the evolutionary history of species because it is maternally inherited and is not subject to genetic recombination (Gyllensten et al., 1991). The high mutation rate of mtDNA makes it a useful tool for differentiating between closely related species (Brown et al., 1979)—a tool that is especially important when significant variations occur between species, but not within species (Hill et al., 2001; Blair et al., 2006; Chow et al., 2006a).
Resumo:
Because of a lack of fishery-dependent data, assessment of the recovery of fish stocks that undergo the most aggressive form of management, namely harvest moratoriums, remains a challenge. Large schools of red drum (Sciaenops ocellatus) were common along the northern Gulf of Mexico until the late 1980s when increased fishing effort quickly depleted the stock. After 24 years of harvest moratorium on red drum in federal waters, the stock is in need of reassessment; however, fisherydependent data are not available in federal waters and fishery-independent data are limited. We document the distribution, age composition, growth, and condition of red drum in coastal waters of the north central Gulf of Mexico, using data collected from a nearshore, randomized, bottom longline survey. Age composition of the fishery-independent catch indicates low mortality of fish age 6 and above and confirms the effectiveness of the federal fishing moratorium. Bottom longline surveys may be a cost-effective method for developing fishery-independent indices for red drum provided additional effort can be added to nearshore waters (<20 m depth). As with most stocks under harvest bans, effective monitoring of the recovery of red drum will require the development of fishery-independent indices. With limited economic incentive to evaluate non-exploited stocks, the most cost-effective approach to developing such monitoring is expansion of existing fishery independent surveys. We examine this possibility for red drum in the Gulf of Mexico and recommend the bottom longline survey conducted by the National Marine Fisheries Service expand effort in nearshore areas to allow for the development of long-term abundance indices for red drum.
Resumo:
We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.
Resumo:
A description of the Cuban set longline fishery on Campeche Bank, Gulf of Mexico is given, with emphasis on the effects of different species of pelagic fishes used as bait. The target species is the red grouper Epinephelus morio, with incidental species consisting of other epinephelids (13%), lutjanids (5.4%) and sparids (1.6%).
Resumo:
The age and growth dynamics of the spinner shark (Carcharhinus brevipinna) in the northwest Atlantic Ocean off the southeast United States and in the Gulf of Mexico were examined and four growth models were used to examine variation in the ability to fit size-at-age data. The von Bertalanffy growth model, an alternative equation of the von Bertalanffy growth model with a size-at-birth intercept, the Gompertz growth model, and a logistic model were fitted to sex-specific observed size-at-age data. Considering the statistical criteria (e.g., lowest mean square error [MSE], high coefficient-of-determination, and greatest level of significance) we desired for this study, the logistic model provided the best overall fit to the size-at-age data, whereas the von Bertalanffy growth model gave the worst. For “biological validity,” the von Bertalanffy model for female sharks provided estimates similar to those reported in other studies. However, the von Bertalanffy model was deemed inappropriate for describing the growth of male spinner sharks because estimates of theoretical maximum size (L∞) indicated a size much larger than that observed in the field. However, the growth coefficient (k= 0.14/yr) from the Gompertz model provided an estimate most similar to that reported for other large coastal species. The analysis of growth for spinner shark in the present study demonstrates the importance of fitting alternative models when standard models fit the data poorly or when growth estimates do not appear to be realistic.
Resumo:
U.S. Gulf of Mexico, pink shrimp, Farfantepenaeus duorarum, catch statistics have been collected by NOAA’s National Marine Fisheries Service, or its predecessor agency, for over 50 years. Recent events, including hurricanes and oil spills within the ecosystem of the fishery, have shown that documentation of these catch data is of primary importance. Fishing effort for this stock has fluctuated over the 50-year period analyzed, ranging from 3,376 to 31,900 days fished, with the most recent years on record, 2008 and 2009, exhibiting declines up to 90% relative to the high levels recorded in the mid 1990’s. Our quantification of F. duorarum landings and catch rates (CPUE) indicates catch have been below the long-term average of about 12 million lb for all of the last 10 years on record. In contrast to catch and effort, catch rates have increased in recent years, with record CPUE levels measured in 2008 and 2009, of 1,340 and 1,144 lb per day fished, respectively. Our regression results revealed catch was dependent upon fishing effort (F=98.48df=1, 48, p<0.001, r2=0.67), (Catch=1,623,378 + (520) × (effort)). High CPUE’s measured indicate stocks were not in decline prior to 2009, despite the decline in catch. The decrease in catch is attributed in large part to low effort levels caused by economical and not biological or habitat related conditions. Future stock assessments using these baseline data will provide further insights and management advice concerning the Gulf of Mexic
Resumo:
In July 2006, a mandatory observer program was implemented to characterize the commercial reef fish fishery operating in the U.S. Gulf of Mexico. The primary gear types assessed included bottom longline and vertical line (bandit and handline). A total of 73,205 fish (183 taxa) were observed in the longline fishery. Most (66%) were red grouper, Epinephelus morio, and yellowedge grouper, E. flavolimbatus. In the vertical line fishery, 89,015 fish (178 taxa) were observed of which most (60%) were red snapper, Lutjanus campechanus, and vermilion snapper, Rhomboplites aurorubens. Based on surface observations of discarded under-sized target and unwanted species, the majority of fish were released alive; minimum assumed mortality was 23% for the vertical line and 24% for the bottom longline fishery. Of the individuals released alive in the longline fishery, 42% had visual signs of barotrauma stress (air bladder expansion/and or eyes protruding). In the vertical line fishery, 35% of the fish were released in a stressed state. Red grouper and red snapper size composition by depth and gear type were determined. Catch-per-unit-effort for dominant species in both fisheries, illustrated spatial differences in distribution between the eastern and western Gulf. Hot Spot Analyses for red grouper and red snapper identified areas with significant clustering of high or low CPUE values.
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
From 2002 through 2008, the Mississippi Laboratories of the NMFS Southeast Fisheries Science Center, NOAA, conducted fishery-independent bottom trawl surveys for continental shelf and outer-continental shelf deep-water fishes and invertebrates of the U.S. Gulf of Mexico (50–500 m bottom depths). Five-hundred and ninety species were captured at 797 bottom trawl locations. Standardized survey gear and randomly selected survey sites have facilitated development of a fishery-independent time series that characterizes species diversity, distributions, and catch per unit effort. The fishery-independent surveys provide synoptic descriptions of deep-water fauna potentially impacted by various anthropogenic factors.
Resumo:
The potential for growth overfishing in the white shrimp, Litopenaeus setiferus, fishery of the northern Gulf of Mexico appears to have been of limited concern to Federal or state shrimp management entities, following the cataclysmic drop in white shrimp abundance in the 1940’s. As expected from surplus production theory, a decrease in size of shrimp in the annual landings accompanies increasing fishing effort, and can eventually reduce the value of the landings. Growth overfishing can exacerbate such decline in value of the annual landings. We characterize trends in size-composition of annual landings and other annual fishery-dependent variables in this fishery to determine relationships between selected pairs of these variables and to determine whether growth overfishing occurred during 1960–2006. Signs of growth overfishing were equivocal. For example, as nominal fishing effort increased, the initially upward, decelerating trend in annual yield approached a local maximum in the 1980’s. However, an accelerating upward trend in yield followed as effort continued to increase. Yield then reached its highest point in the time series in 2006, as nominal fishing effort declined due to exogenous factors outside the control of shrimp fishery managers. The quadratic relationship between annual yield and nominal fishing effort exhibited a local maximum of 5.24(107) pounds (≈ MSY) at a nominal fishing effort level of 1.38(105) days fished. However, annual yield showed a continuous increase with decrease in size of shrimp in the landings. Annual inflation-adjusted ex-vessel value of the landings peaked in 1989, preceded by a peak in annual inflation-adjusted ex-vessel value per pound (i.e. price) in 1983. Changes in size composition of shrimp landings and their economic effects should be included among guidelines for future management of this white shrimp
Resumo:
There is no evidence that a commercial bay scallop fishery exists anywhere in the northwestern Gulf of Mexico. No data concerning scallop abundance or distribution was found for Alabama, Mississippi, and Louisiana. Texas is the only state west of Florida where bay scallop populations have been documented. These records come from a variety of literature sources and the fisheries-independent data collected by Texas Parks and Wildlife Department (1982–2005). Although common in the diet of prehistoric peoples living on the Texas coast, recent (last ~50 years) bay scallop population densities tend to be low and exhibit “boom–bust” cycles of about 10–15 years. The Laguna Madre, is the only place on the Texas coast where scallops are relatively abundant; this is likely due to extensive seagrasses cover (>70%) and salinities that typically exceed 35 psu. The lack of bay scallop fishery development in the northwestern Gulf of Mexico is probably due to variable but generally low densities of the species combined with a limited amount of suitable (i.e. seagrass