776 resultados para Conjuntos Fuzzy
Resumo:
Los conjuntos borrosos de tipo 2 (T2FSs) fueron introducidos por L.A. Zadeh en 1975 [65], como una extensión de los conjuntos borrosos de tipo 1 (FSs). Mientras que en estos últimos el grado de pertenencia de un elemento al conjunto viene determinado por un valor en el intervalo [0, 1], en el caso de los T2FSs el grado de pertenencia de un elemento es un conjunto borroso en [0,1], es decir, un T2FS queda determinado por una función de pertenencia μ : X → M, donde M = [0, 1][0,1] = Map([0, 1], [0, 1]), es el conjunto de las funciones de [0,1] en [0,1] (ver [39], [42], [43], [61]). Desde que los T2FSs fueron introducidos, se han generalizado a dicho conjunto (ver [39], [42], [43], [61], por ejemplo), a partir del “Principio de Extensión” de Zadeh [65] (ver Teorema 1.1), muchas de las definiciones, operaciones, propiedades y resultados obtenidos en los FSs. Sin embargo, como sucede en cualquier área de investigación, quedan muchas lagunas y problemas abiertos que suponen un reto para cualquiera que quiera hacer un estudio profundo en este campo. A este reto se ha dedicado el presente trabajo, logrando avances importantes en este sentido de “rellenar huecos” existentes en la teoría de los conjuntos borrosos de tipo 2, especialmente en las propiedades de autocontradicción y N-autocontradicción, y en las operaciones de negación, t-norma y t-conorma sobre los T2FSs. Cabe destacar que en [61] se justifica que las operaciones sobre los T2FSs (Map(X,M)) se pueden definir de forma natural a partir de las operaciones sobre M, verificando las mismas propiedades. Por tanto, por ser más fácil, en el presente trabajo se toma como objeto de estudio a M, y algunos de sus subconjuntos, en vez de Map(X,M). En cuanto a la operación de negación, en el marco de los conjuntos borrosos de tipo 2 (T2FSs), usualmente se emplea para representar la negación en M, una operación asociada a la negación estándar en [0,1]. Sin embargo, dicha operación no verifica los axiomas que, intuitivamente, debe verificar cualquier operación para ser considerada negación en el conjunto M. En este trabajo se presentan los axiomas de negación y negación fuerte en los T2FSs. También se define una operación asociada a cualquier negación suprayectiva en [0,1], incluyendo la negación estándar, y se estudia, junto con otras propiedades, si es negación y negación fuerte en L (conjunto de las funciones de M normales y convexas). Además, se comprueba en qué condiciones se cumplen las leyes de De Morgan para un extenso conjunto de pares de operaciones binarias en M. Por otra parte, las propiedades de N-autocontradicción y autocontradicción, han sido suficientemente estudiadas en los conjuntos borrosos de tipo 1 (FSs) y en los conjuntos borrosos intuicionistas de Atanassov (AIFSs). En el presente trabajo se inicia el estudio de las mencionadas propiedades, dentro del marco de los T2FSs cuyos grados de pertenencia están en L. En este sentido, aquí se extienden los conceptos de N-autocontradicción y autocontradicción al conjunto L, y se determinan algunos criterios para verificar tales propiedades. En cuanto a otras operaciones, Walker et al. ([61], [63]) definieron dos familias de operaciones binarias sobre M, y determinaron que, bajo ciertas condiciones, estas operaciones son t-normas (normas triangulares) o t-conormas sobre L. En este trabajo se introducen operaciones binarias sobre M, unas más generales y otras diferentes a las dadas por Walker et al., y se estudian varias propiedades de las mismas, con el objeto de deducir nuevas t-normas y t-conormas sobre L. ABSTRACT Type-2 fuzzy sets (T2FSs) were introduced by L.A. Zadeh in 1975 [65] as an extension of type-1 fuzzy sets (FSs). Whereas for FSs the degree of membership of an element of a set is determined by a value in the interval [0, 1] , the degree of membership of an element for T2FSs is a fuzzy set in [0,1], that is, a T2FS is determined by a membership function μ : X → M, where M = [0, 1][0,1] is the set of functions from [0,1] to [0,1] (see [39], [42], [43], [61]). Later, many definitions, operations, properties and results known on FSs, have been generalized to T2FSs (e.g. see [39], [42], [43], [61]) by employing Zadeh’s Extension Principle [65] (see Theorem 1.1). However, as in any area of research, there are still many open problems which represent a challenge for anyone who wants to make a deep study in this field. Then, we have been dedicated to such challenge, making significant progress in this direction to “fill gaps” (close open problems) in the theory of T2FSs, especially on the properties of self-contradiction and N-self-contradiction, and on the operations of negations, t-norms (triangular norms) and t-conorms on T2FSs. Walker and Walker justify in [61] that the operations on Map(X,M) can be defined naturally from the operations onMand have the same properties. Therefore, we will work onM(study subject), and some subsets of M, as all the results are easily and directly extensible to Map(X,M). About the operation of negation, usually has been employed in the framework of T2FSs, a operation associated to standard negation on [0,1], but such operation does not satisfy the negation axioms on M. In this work, we introduce the axioms that a function inMshould satisfy to qualify as a type-2 negation and strong type-2 negation. Also, we define a operation on M associated to any suprajective negation on [0,1], and analyse, among others properties, if such operation is negation or strong negation on L (all normal and convex functions of M). Besides, we study the De Morgan’s laws, with respect to some binary operations on M. On the other hand, The properties of self-contradiction and N-self-contradiction have been extensively studied on FSs and on the Atanassov’s intuitionistic fuzzy sets (AIFSs). Thereon, in this research we begin the study of the mentioned properties on the framework of T2FSs. In this sense, we give the definitions about self-contradiction and N-self-contradiction on L, and establish the criteria to verify these properties on L. Respect to the t-norms and t-conorms, Walker et al. ([61], [63]) defined two families of binary operations on M and found that, under some conditions, these operations are t-norms or t-conorms on L. In this work we introduce more general binary operations on M than those given by Walker et al. and study which are the minimum conditions necessary for these operations satisfy each of the axioms of the t-norm and t-conorm.
Resumo:
En este trabajo se intenta obtener la noción de adjunción más débil entre estructuras difusas. Este trabajo continúa la línea de investigación en el estudio y construcción d adjunciones que han realizado los autores en contribuciones anteriores. Nos centraremos ahora en la noción de relación difusa que es en cierto sentido interpretable como una función difusa. Existen varios trabajos en la literatura relacionados con este tema. Entre todos ellos, trabajaremos con un enfoque próximo al de Ciric et al cuando definen las denominadas funciones parciales difusas. El nuevo concepto estudiado es el de relaciones difusas funcionales y la construcción de adjunciones entre ellas.
Resumo:
Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.
Resumo:
With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning.
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.