1000 resultados para Conformal eld theory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mmoire numris par la Division de la gestion de documents et des archives de l'Universit de Montral

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les modles sur rseau comme ceux de la percolation, dIsing et de Potts servent dcrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de thories des champs conformes rationnelles, limites continues des modles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des thories des champs conformes rationnelles peut tre largi pour inclure les modles statistiques avec des matrices de transfert non diagonalisables. Ces modles seraient alors dcrits, dans la limite dchelle, par des thories des champs logarithmiques et les reprsentations de lalgbre de Virasoro intervenant dans la description des observables physiques seraient indcomposables. La matrice de transfert de boucles D_N(, u), un lment de lalgbre de Temperley- Lieb, se manifeste dans les thories physiques laide des reprsentations de connectivits (link modules). Lespace vectoriel sur lequel agit cette reprsentation se dcompose en secteurs tiquets par un paramtre physique, le nombre d de dfauts. Laction de cette reprsentation ne peut que diminuer ce nombre ou le laisser constant. La thse est consacre lidentification de la structure de Jordan de D_N(, u) dans ces reprsentations. Le paramtre = 2 cos = (q + 1/q) fixe la thorie : = 1 pour la percolation et 2 pour le modle dIsing, par exemple. Sur la gomtrie du ruban, nous montrons que D_N(, u) possde les mmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous tudions la non diagonalisabilit de F_N laide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de . Nous prouvons dans (D_N(, u)) lexistence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d lorsque certaines contraintes sur , d, d et N sont satisfaites. Pour le modle de polymres denses critique ( = 0) sur le ruban, les valeurs propres de (D_N(, u)) taient connues, mais les dgnrescences conjectures. En construisant un isomorphisme entre les modules de connectivits et un sous-espace des modules de spins du modle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de lhamiltonien de boucles un secteur donn est diagonalisable et trouvons la forme de Jordan exacte de lhamiltonien XX, non triviale pour N pair seulement. Enfin nous tudions la structure de Jordan de la matrice de transfert T_N(, ) pour des conditions aux frontires priodiques. La matrice T_N(, ) a des blocs de Jordan intrasectoriels et intersectoriels lorsque = a/b, et a, b Z. Lapproche par F_N admet une gnralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excde 2 dans certains cas et peut crotre indfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les reprsentations de connectivits sur le cylindre et celles du modle XXZ sont isomorphes sauf pour certaines valeurs prcises de q et du paramtre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs gnraliss de Jordan de rang 2 et discutons lexistence de blocs de Jordan intrasectoriels de plus haut rang.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thse porte sur les phnomnes critiques survenant dans les modles bidimensionnels sur rseau. Les rsultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques dcrivant des objets gomtriques du rseau et, le second, sur la construction d'idempotents projetant sur des modules indcomposables de l'algbre de Temperley-Lieb pour la chane de spins XXZ. Le premier article prsente des expriences numriques Monte Carlo effectues pour une famille de modles de boucles en phase dilue. Baptiss "dilute loop models (DLM)", ceux-ci sont inspirs du modle O(n) introduit par Nienhuis (1990). La famille est tiquete par les entiers relativement premiers p et p' ainsi que par un paramtre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modle DLM(p,p') soit dcrit par une thorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), o \kappa=p/p' est li la fugacit du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramtre d'anisotropie. Les mesures portent sur les exposants critiques reprsentant la loi d'chelle des objets gomtriques suivants : l'interface, le primtre externe et les liens rouges. L'algorithme Metropolis-Hastings employ, pour lequel nous avons introduit de nombreuses amliorations spcifiques aux modles dilus, est dtaill. Un traitement statistique rigoureux des donnes permet des extrapolations concidant avec les prdictions thoriques trois ou quatre chiffres significatifs, malgr des courbes d'extrapolation aux pentes abruptes. Le deuxime article porte sur la dcomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chane XXZ de n spins 1/2 agit. La version tudie ici (Pasquier et Saleur (1990)) est dcrite par un hamiltonien H_{XXZ}(q) dpendant d'un paramtre q\in C^\times et s'exprimant comme une somme d'lments de l'algbre de Temperley-Lieb TL_n(q). Comme pour les modles dilus, le spectre de la limite continue de H_{XXZ}(q) semble reli aux thories des champs conformes, le paramtre q dterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'lments de l'algbre quantique U_qsl_2 (ou d'une extension) par la dualit de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indcomposables de \otimes^nC^2. Ceux-ci sont tous irrductibles, sauf si q est une racine de l'unit. Cette exception est traite sparment du cas o q est gnrique. Les problmes rsolus par ces articles ncessitent une grande varit de rsultats et d'outils. Pour cette raison, la thse comporte plusieurs chapitres prparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phnomnes critiques et de la thorie des champs conformes. Le deuxime chapitre aborde brivement la question des champs logarithmiques, l'volution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont ncessaires la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrime chapitre prsente les outils algbriques utiliss dans le deuxime article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thse conclut par un rsum des rsultats importants et la proposition d'avenues de recherche qui en dcoulent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose and analyse a class of evolving network models suitable for describing a dynamic topological structure. Applications include telecommunication, on-line social behaviour and information processing in neuroscience. We model the evolving network as a discrete time Markov chain, and study a very general framework where, conditioned on the current state, edges appear or disappear independently at the next timestep. We show how to exploit symmetries in the microscopic, localized rules in order to obtain conjugate classes of random graphs that simplify analysis and calibration of a model. Further, we develop a mean eld theory for describing network evolution. For a simple but realistic scenario incorporating the triadic closure eect that has been empirically observed by social scientists (friends of friends tend to become friends), the mean eld theory predicts bistable dynamics, and computational results conrm this prediction. We also discuss the calibration issue for a set of real cell phone data, and nd support for a stratied model, where individuals are assigned to one of two distinct groups having dierent within-group and across-group dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sigma model describing the dynamics of the superstring in the AdS(5) x S(5) background can be constructed using the coset PSU(2, 2 vertical bar 4)/SO(4, 1) x SO(5). A basic set of operators in this two dimensional conformal field theory is composed by the left invariant currents. Since these currents are not (anti) holomorphic, their OPE`s is not determined by symmetry principles and its computation should be performed perturbatively. Using the pure spinor sigma model for this background, we compute the one-loop correction to these OPE`s. We also compute the OPE`s of the left invariant currents with the energy momentum tensor at tree level and one loop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the U(4) hybrid formalism, manifestly N = (2,2) worldsheet supersymmetric sigma models are constructed for the type-IIB superstring in Ramond-Ramond backgrounds. The Kahler potential in these N = 2 sigma models depends on four chiral and antichiral bosonic superfields and two chiral and antichiral fermionic superfields. When the Kahler potential is quadratic, the model is a free conformal field theory which describes a flat ten-dimensional target space with Ramond-Ramond flux and non-constant dilaton. For more general Kahler potentials, the model describes curved target spaces with Ramond-Ramond flux that are not plane-wave backgrounds. Ricci-flatness of the Kahler metric implies the on-shell conditions for the background up to the usual four-loop conformal anomaly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that multitrace interactions can be consistently incorporated into an extended AdS conformal field theory (CFT) prescription involving the inclusion of generalized boundary conditions and a modified Legendre transform prescription. We find new and consistent results by considering a self-contained formulation which relates the quantization of the bulk theory to the AdS/CFT correspondence and the perturbation at the boundary by double-trace interactions. We show that there exist particular double-trace perturbations for which irregular modes are allowed to propagate as well as the regular ones. We perform a detailed analysis of many different possible situations, for both minimally and nonminimally coupled cases. In all situations, we make use of a new constraint which is found by requiring consistency. In the particular nonminimally coupled case, the natural extension of the Gibbons-Hawking surface term is generated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the U(4) hybrid formalism, manifestly N = (2,2) worldsheet supersymmetric sigma models are constructed for the type-IIB superstring in Ramond-Ramond backgrounds. The Kahler potential in these N = 2 sigma models depends on four chiral and antichiral bosonic superfields and two chiral and antichiral fermionic superfields. When the Kahler potential is quadratic, the model is a free conformal field theory which describes a flat ten-dimensional target space with Ramond-Ramond flux and non-constant dilaton. For more general Kahler potentials, the model describes curved target spaces with Ramond-Ramond flux that are not plane-wave backgrounds. Ricci-flatness of the Kahler metric implies the on-shell conditions for the background up to the usual four-loop conformal anomaly. SISSA/ISAS 2002.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenao de Aperfeioamento de Pessoal de Nvel Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ps-graduao em Fsica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenao de Aperfeioamento de Pessoal de Nvel Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundao de Amparo Pesquisa do Estado de So Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ps-graduao em Fsica - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundao de Amparo Pesquisa do Estado de So Paulo (FAPESP)