942 resultados para Configuration Space Analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adaptive agents use feedback as a key strategy to cope with un- certainty and change in their environments. The information fed back from the sensorimotor loop into the control subsystem can be used to change four different elements of the controller: parameters associated to the control model, the control model itself, the functional organization of the agent and the functional realization of the agent. There are many change alternatives and hence the complexity of the agent’s space of potential configurations is daunting. The only viable alternative for space- and time-constrained agents —in practical, economical, evolutionary terms— is to achieve a reduction of the dimensionality of this configuration space. Emotions play a critical role in this reduction. The reduction is achieved by func- tionalization, interface minimization and by patterning, i.e. by selection among a predefined set of organizational configurations. This analysis lets us state how autonomy emerges from the integration of cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. Emotion-based morphofunctional systems are able to exhibit complex adaptation patterns at a reduced cognitive cost. In this article we show a general model of how emotion supports functional adaptation and how the emotional biological systems operate following this theoretical model. We will also show how this model is also of applicability to the construction of a wide spectrum of artificial systems1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schrödinger’s equation of a three-body system is a linear partial differential equation (PDE) defined on the 9-dimensional configuration space, ℝ9, naturally equipped with Jacobi’s kinematic metric and with translational and rotational symmetries. The natural invariance of Schrödinger’s equation with respect to the translational symmetry enables us to reduce the configuration space to that of a 6-dimensional one, while that of the rotational symmetry provides the quantum mechanical version of angular momentum conservation. However, the problem of maximizing the use of rotational invariance so as to enable us to reduce Schrödinger’s equation to corresponding PDEs solely defined on triangular parameters—i.e., at the level of ℝ6/SO(3)—has never been adequately treated. This article describes the results on the orbital geometry and the harmonic analysis of (SO(3),ℝ6) which enable us to obtain such a reduction of Schrödinger’s equation of three-body systems to PDEs solely defined on triangular parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis proposes a generic visual perception architecture for robotic clothes perception and manipulation. This proposed architecture is fully integrated with a stereo vision system and a dual-arm robot and is able to perform a number of autonomous laundering tasks. Clothes perception and manipulation is a novel research topic in robotics and has experienced rapid development in recent years. Compared to the task of perceiving and manipulating rigid objects, clothes perception and manipulation poses a greater challenge. This can be attributed to two reasons: firstly, deformable clothing requires precise (high-acuity) visual perception and dexterous manipulation; secondly, as clothing approximates a non-rigid 2-manifold in 3-space, that can adopt a quasi-infinite configuration space, the potential variability in the appearance of clothing items makes them difficult to understand, identify uniquely, and interact with by machine. From an applications perspective, and as part of EU CloPeMa project, the integrated visual perception architecture refines a pre-existing clothing manipulation pipeline by completing pre-wash clothes (category) sorting (using single-shot or interactive perception for garment categorisation and manipulation) and post-wash dual-arm flattening. To the best of the author’s knowledge, as investigated in this thesis, the autonomous clothing perception and manipulation solutions presented here were first proposed and reported by the author. All of the reported robot demonstrations in this work follow a perception-manipulation method- ology where visual and tactile feedback (in the form of surface wrinkledness captured by the high accuracy depth sensor i.e. CloPeMa stereo head or the predictive confidence modelled by Gaussian Processing) serve as the halting criteria in the flattening and sorting tasks, respectively. From scientific perspective, the proposed visual perception architecture addresses the above challenges by parsing and grouping 3D clothing configurations hierarchically from low-level curvatures, through mid-level surface shape representations (providing topological descriptions and 3D texture representations), to high-level semantic structures and statistical descriptions. A range of visual features such as Shape Index, Surface Topologies Analysis and Local Binary Patterns have been adapted within this work to parse clothing surfaces and textures and several novel features have been devised, including B-Spline Patches with Locality-Constrained Linear coding, and Topology Spatial Distance to describe and quantify generic landmarks (wrinkles and folds). The essence of this proposed architecture comprises 3D generic surface parsing and interpretation, which is critical to underpinning a number of laundering tasks and has the potential to be extended to other rigid and non-rigid object perception and manipulation tasks. The experimental results presented in this thesis demonstrate that: firstly, the proposed grasp- ing approach achieves on-average 84.7% accuracy; secondly, the proposed flattening approach is able to flatten towels, t-shirts and pants (shorts) within 9 iterations on-average; thirdly, the proposed clothes recognition pipeline can recognise clothes categories from highly wrinkled configurations and advances the state-of-the-art by 36% in terms of classification accuracy, achieving an 83.2% true-positive classification rate when discriminating between five categories of clothes; finally the Gaussian Process based interactive perception approach exhibits a substantial improvement over single-shot perception. Accordingly, this thesis has advanced the state-of-the-art of robot clothes perception and manipulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are many deformable objects such as papers, clothes, ropes in a person’s living space. To have a robot working in automating the daily tasks it is important that the robot works with these deformable objects. Manipulation of deformable objects is a challenging task for robots because these objects have an infinite-dimensional configuration space and are expensive to model, making real-time monitoring, planning and control difficult. It forms a particularly important field of robotics with relevant applications in different sectors such as medicine, food handling, manufacturing, and household chores. In this report, there is a clear review of the approaches used and are currently in use along with future developments to achieve this task. My research is more focused on the last 10 years, where I have systematically reviewed many articles to have a clear understanding of developments in this field. The main contribution is to show the whole landscape of this concept and provide a broad view of how it has evolved. I also explained my research methodology by following my analysis from the past to the present along with my thoughts for the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we determine the lower central and derived series for the braid groups of the sphere. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is important in its own right. The braid groups of the 2-sphere S(2) were studied by Fadell, Van Buskirk and Gillette during the 1960s, and are of particular interest due to the fact that they have torsion elements (which were characterised by Murasugi). We first prove that for all n epsilon N, the lower central series of the n-string braid group B(n)(S(2)) is constant from the commutator subgroup onwards. We obtain a presentation of Gamma(2)(Bn(S(2))), from which we observe that Gamma(2)(B(4)(S(2))) is a semi-direct product of the quaternion group Q(8) of order 8 by a free group F(2) of rank 2. As for the derived series of Bn(S(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group Bn(S(2)) being finite and soluble for n <= 3, the critical case is n = 4 for which the derived subgroup is the above semi-direct product Q(8) (sic) F(2). By proving a general result concerning the structure of the derived subgroup of a semi-direct product, we are able to determine completely the derived series of B(4)(S(2)) which from (B(4)(S(2)))(4) onwards coincides with that of the free group of rank 2, as well as its successive derived series quotients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Com este trabalho mostra-se a importância da utilização integrada de modelos numéricos e de resultados da observação do comportamento dinâmico de barragens com vista ao controlo da segurança de sistemas barragem-fundação-albufeira. Neste trabalho utilizou-se o MATLAB para desenvolver um programa de elementos finitos 3D (DySSA 1.0, “Dynamic State Space Analysis”) para análise do comportamento dinâmico de sistemas barragem-fundação-albufeira considerando uma formulação em deslocamentos com a albufeira discretizada em elementos finitos com módulo de distorção nulo. Utiliza-se uma formulação no espaço de estados o que permite considerar amortecimento não proporcional à massa e à rigidez e conduz a modos de vibração complexos. Apresentam-se os fundamentos do método dos elementos finitos na perspetiva da sua implementação computacional para análise dinâmica de estruturas, e apresenta-se sumariamente o programa DySSA 1.0, o qual permite a análise estática e dinâmica de estruturas utilizando elementos finitos tridimensionais isoparamétricos do segundo grau (tipo cubo com 20 pontos nodais), e correspondentes elementos de junta (com 16 pontos nodais, 8 por cada face). O programa foi testado com base na análise dinâmica de uma parede em consola submetida à pressão hidrodinâmica. Os resultados numéricos foram comparados com soluções analíticas e com resultados experimentais obtidos no laboratório de estruturas do ISEL. Descrevem-se os fundamentos da análise dinâmica de estruturas no domínio do tempo, e referem-se os princípios em que se baseiam as metodologias de identificação modal no domínio da frequência. Analisa-se o comportamento dinâmico da barragem do Cabril em termos de frequências naturais e configurações modais, utilizando um modelo 3D representativo do sistema. Os resultados deste modelo numérico são comparados com resultados experimentais obtidos com base no sistema de monitorização dinâmica em contínuo, que foi instalado pelo LNEC em 2008.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to characterize the nanofilm consisting of the benzoic acid-modified glassy carbon (GC) electrode system through multidimensional scaling space analysis. The surface modification is based on the electrochemical reaction between the GC electrode and benzoic acid-diazonium salt (BA-DAS). As a result, the nonofilms regarding the benzoic acid-glassy carbon (BA-GC) electrode surface was obtained. For the analysis of the naonfilm of BC-GC electrode system, the IR spectra of the modified BA-GC electrode surface, GC surface and BA-DAS were recorded in the spectral range of 599.84 – 3996.34 [cm–1]. The IR data vectors of the above three forms were processed by the using the multidimensional scaling space approach to demonstrate the existence of a nanofilm on the modified BA-GC electrode system. Two- and three-dimensional MDS profiles obtained by application of multidimensional scaling approach to the data sets {CG1,...,CG10}, {BA-GC1,...,BA-GC10} and {FILM1,...,FILM10} allow a good recognition of the nanofilm on the modified glassy carbon (GC) electrode system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Per a determinar la dinàmica espai-temporal completa d’un sistema quàntic tridimensional de N partícules cal integrar l’equació d’Schrödinger en 3N dimensions. La capacitat dels ordinadors actuals permet fer-ho com a molt en 3 dimensions. Amb l’objectiu de disminuir el temps de càlcul necessari per a integrar l’equació d’Schrödinger multidimensional, es realitzen usualment una sèrie d’aproximacions, com l’aproximació de Born–Oppenheimer o la de camp mig. En general, el preu que es paga en realitzar aquestes aproximacions és la pèrdua de les correlacions quàntiques (o entrellaçament). Per tant, és necessari desenvolupar mètodes numèrics que permetin integrar i estudiar la dinàmica de sistemes mesoscòpics (sistemes d’entre tres i unes deu partícules) i en els que es tinguin en compte, encara que sigui de forma aproximada, les correlacions quàntiques entre partícules. Recentment, en el context de la propagació d’electrons per efecte túnel en materials semiconductors, X. Oriols ha desenvolupat un nou mètode [Phys. Rev. Lett. 98, 066803 (2007)] per al tractament de les correlacions quàntiques en sistemes mesoscòpics. Aquesta nova proposta es fonamenta en la formulació de la mecànica quàntica de de Broglie– Bohm. Així, volem fer notar que l’enfoc del problema que realitza X. Oriols i que pretenem aquí seguir no es realitza a fi de comptar amb una eina interpretativa, sinó per a obtenir una eina de càlcul numèric amb la que integrar de manera més eficient l’equació d’Schrödinger corresponent a sistemes quàntics de poques partícules. En el marc del present projecte de tesi doctoral es pretén estendre els algorismes desenvolupats per X. Oriols a sistemes quàntics constituïts tant per fermions com per bosons, i aplicar aquests algorismes a diferents sistemes quàntics mesoscòpics on les correlacions quàntiques juguen un paper important. De forma específica, els problemes a estudiar són els següents: (i) Fotoionització de l’àtom d’heli i de l’àtom de liti mitjançant un làser intens. (ii) Estudi de la relació entre la formulació de X. Oriols amb la aproximació de Born–Oppenheimer. (iii) Estudi de les correlacions quàntiques en sistemes bi- i tripartits en l’espai de configuració de les partícules mitjançant la formulació de de Broglie–Bohm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present here a nonbiased probabilistic method that allows us to consistently analyze knottedness of linear random walks with up to several hundred noncorrelated steps. The method consists of analyzing the spectrum of knots formed by multiple closures of the same open walk through random points on a sphere enclosing the walk. Knottedness of individual "frozen" configurations of linear chains is therefore defined by a characteristic spectrum of realizable knots. We show that in the great majority of cases this method clearly defines the dominant knot type of a walk, i.e., the strongest component of the spectrum. In such cases, direct end-to-end closure creates a knot that usually coincides with the knot type that dominates the random closure spectrum. Interestingly, in a very small proportion of linear random walks, the knot type is not clearly defined. Such walks can be considered as residing in a border zone of the configuration space of two or more knot types. We also characterize the scaling behavior of linear random knots.