928 resultados para Concentric tube
Resumo:
This paper presents a combined experimental and numerical study on the behaviour of both circular and square concrete-filled steel tube (CFT) stub columns under local compression. Twelve circular and eight square CFT stub columns were tested to study their bearing capacity and the key influential parameters. A 3D finite element model was established for simulation and parametric study to investigate the structural behaviour of the stub columns. The numerical results agreed well with the experimental results. In addition, analytical formulas were proposed to calculate the load bearing capacity of CFT stub columns under local compression.
Resumo:
This paper presents a numerical study of the response of axially loaded concrete filled steel tube (CFST) columns under lateral impact loading using explicit non-linear finite element techniques. The aims of this paper are to evaluate the vulnerability of existing columns to credible impact events as well as to contribute new information towards the safe design of such vulnerable columns. The model incorporates concrete confinement, strain rate effects of steel and concrete, contact between the steel tube and concrete and dynamic relaxation for pre-loading, which is a relatively recent method for applying a pre-loading in the explicit solver. The finite element model was first verified by comparing results with existing experimental results and then employed to conduct a parametric sensitivity analysis. The effects of various structural and load parameters on the impact response of the CFST column were evaluated to identify the key controlling factors. Overall, the major parameters which influence the impact response of the column are the steel tube thickness to diameter ratio, the slenderness ratio and the impact velocity. The findings of this study will enhance the current state of knowledge in this area and can serve as a benchmark reference for future analysis and design of CFST columns under lateral impact.
Resumo:
The present study explored the effects of the double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The double counter twisted tapes were used as counter-swirl flow generators in the test section. The experiments were performed with double counter twisted tapes of four different twist ratios (y = 1.95, 3.85, 5.92 and 7.75) using air as the testing fluid in a circular tube turbulent flow regime where the Reynolds number was varied from 6950 to 50,050. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing twist ratio. The results also revealed that the heat transfer rate in the tube fitted with double counter twisted tape was significantly increased with corresponding increase in pressure drop. In the range of the present work, heat transfer rate and friction factor were obtained to be around 60 to 240% and 91 to 286% higher than those of the plain tube values, respectively. The maximum thermal enhancement efficiency of 1.34 was achieved by the use of double counter twisted tapes at constant blower power. In addition, the empirical correlations for the Nusselt number, friction factor and thermal enhancement efficiency were also developed, based on the experimental data.
Resumo:
Purpose To determine i) the architectural adaptations of the biceps femoris long head (BFlf) following concentric or eccentric strength training interventions; ii) the time course of adaptation during training and detraining. Methods Participants in this randomized controlled trial (control [n=28], concentric training group [n=14], eccentric training group [n=14], males) completed a 4-week control period, followed by 6 weeks of either concentric- or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 days of detraining. Architectural characteristics of BFlf were assessed at rest and during graded isometric contractions utilizing two-dimensional ultrasonography at 28 days pre-baseline, baseline, days 14, 21 and 42 of the intervention and then again following 28 days of detraining. Results BFlf fascicle length was significantly longer in the eccentric training group (p<0.05, d range: 2.65 to 2.98) and shorter in the concentric training group (p<0.05, d range: -1.62 to -0.96) after 42 days of training compared to baseline at all isometric contraction intensities. Following the 28-day detraining period, BFlf fascicle length was significantly reduced in the eccentric training group at all contraction intensities compared to the end of the intervention (p<0.05, d range: -1.73 to -1.55). There was no significant change in fascicle length of the concentric training group following the detraining period. Conclusions These results provide evidence that short term resistance training can lead to architectural alterations in the BFlf. In addition, the eccentric training-induced lengthening of BFlf fascicle length was reversed and returned to baseline values following 28 days of detraining. The contraction mode specific adaptations in this study may have implications for injury prevention and rehabilitation.
Resumo:
An equation governing the excess pressure has been derived, for an axially tethered and stenosed elastic tube filled with viscous liquid, by introducing the elasticity of the tube through pressure-area relation. This equation is solved numerically for large Womersley parameter and the results are presented for different types of pressure-radius relations and geometries by prescribing an outgoing wave suffering attenuation at some axial point of the tube. For a locally constricted tube it is observed that the pressure oscillates more and generates sound on the down stream side of the constriction.
Resumo:
mathematical model for the steady flow of non-Newtonian fluid through a stenotic region is presented. The results indicate that the general shape and size of the stenosis together with rheological properties of blood are important in understanding the flow characteristics and the presence of flow separation.
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.
Resumo:
Aims & Objectives - identify and diagnose the current problems associated with patient care with regard to the nursing management of patients with Sengstaken-Blakemore tubes insitu; - Identify current nursing practice currently in place within the ICU and the hospital; identify the method by which the assessment and provision of nursing care is delivered in the ICU
Resumo:
A molecular assay with enhanced specificity and sensitivity has been developed to assist in the surveillance of Karnal bunt, a quarantineable disease with a significant impact on international trade. The protocol involves the release of DNA from spores, PCR amplification to enrich Tilletia-specific templates from released DNA and a five-plex, real-time PCR assay to detect, identify and distinguish T. indica and other Tilletia species (T. walkeri, T. ehrhartae, T. horrida and a group comprising T. caries, T. laevis, T. contraversa, T. bromi and T. fusca) in wheat grains. This fluorescent molecular tool has a detection sensitivity of one spore and thus bypasses the germination step, which in the current protocol is required for confirmation when only a few spores have been found in grain samples. The assay contains five dual-labelled, species-specific probes and associated species-specific primer pairs in a PCR mix in one tube. The different amplification products are detected simultaneously by five different fluorescence spectra. This specific and sensitive assay with reduced labour and reagent requirements makes it an effective and economically sustainable tool to be used in a Karnal bunt surveillance program. This protocol will also be valuable for the identification of some contaminant Tilletia sp. in wheat grains.
Resumo:
An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.
Resumo:
Oscillatory flow in a tube of slowly varying cross section is investigated in the presence of a uniform magnetic field in the axial direction. A perturbation solution including steady streaming is presented. The pressure and shear stress on the wall for various parameters governing the flow are discussed. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
In this paper we have discussed the motion of a viscous fluid with suspended particles through a curved tube of small curvature ratio. The system is treated as two separate interacting continua. Solutions for axial and secondary velocities are obtained in the form of asymptotic expansions in powers of Dean Number. The streamline pattern for the particulate phase reveals many interesting features. The influence of the particulate continium on the fluid is described by the parameter τ which depends on the density ratio of the two continua. The concentration distribution of the particles in a given cross section is determined. It is noticed that the particles move closer to the wall for certain values of the concentration and the density ratio.
Resumo:
K-means algorithm is a well known nonhierarchical method for clustering data. The most important limitations of this algorithm are that: (1) it gives final clusters on the basis of the cluster centroids or the seed points chosen initially, and (2) it is appropriate for data sets having fairly isotropic clusters. But this algorithm has the advantage of low computation and storage requirements. On the other hand, hierarchical agglomerative clustering algorithm, which can cluster nonisotropic (chain-like and concentric) clusters, requires high storage and computation requirements. This paper suggests a new method for selecting the initial seed points, so that theK-means algorithm gives the same results for any input data order. This paper also describes a hybrid clustering algorithm, based on the concepts of multilevel theory, which is nonhierarchical at the first level and hierarchical from second level onwards, to cluster data sets having (i) chain-like clusters and (ii) concentric clusters. It is observed that this hybrid clustering algorithm gives the same results as the hierarchical clustering algorithm, with less computation and storage requirements.
Resumo:
Consummating our earlier work [1], the unsteady flow of a fairly concentrated suspension due to a single contraction or expansion of the walls of a tube is studied. A comparison of the results obtained by using two different formulae for the additional drag terms in the governing equations has been made. A region of circulation in the flow field is observed when the volume fraction Z greater-or-equal, slanted 0.3, the Schmidt number Sc < 1 and the density ratio (density of the particulate phase/density of the fluid phase) > 1.