902 resultados para Computational time
Resumo:
Solution of generalized eigenproblem, K phi = lambda M phi, by the classical inverse iteration method exhibits slow convergence for some eigenproblems. In this paper, a modified inverse iteration algorithm is presented for improving the convergence rate. At every iteration, an optimal linear combination of the latest and the preceding iteration vectors is used as the input vector for the next iteration. The effectiveness of the proposed algorithm is demonstrated for three typical eigenproblems, i.e. eigenproblems with distinct, close and repeated eigenvalues. The algorithm yields 29, 96 and 23% savings in computational time, respectively, for these problems. The algorithm is simple and easy to implement, and this renders the algorithm even more attractive.
Resumo:
The protein-protein docking programs typically perform four major tasks: (i) generation of docking poses, (ii) selecting a subset of poses, (iii) their structural refinement and (iv) scoring, ranking for the final assessment of the true quaternary structure. Although the tasks can be integrated or performed in a serial order, they are by nature modular, allowing an opportunity to substitute one algorithm with another. We have implemented two modular web services, (i) PRUNE: to select a subset of docking poses generated during sampling search (http://pallab.serc.iisc.ernet.in/prune) and (ii) PROBE: to refine, score and rank them (http://pallab.serc.iisc.ernet.in/probe). The former uses a new interface area based edge-scoring function to eliminate > 95% of the poses generated during docking search. In contrast to other multi-parameter-based screening functions, this single parameter based elimination reduces the computational time significantly, in addition to increasing the chances of selecting native-like models in the top rank list. The PROBE server performs ranking of pruned poses, after structure refinement and scoring using a regression model for geometric compatibility, and normalized interaction energy. While web-service similar to PROBE is infrequent, no web-service akin to PRUNE has been described before. Both the servers are publicly accessible and free for use.
Resumo:
To resolve many flow features accurately, like accurate capture of suction peak in subsonic flows and crisp shocks in flows with discontinuities, to minimise the loss in stagnation pressure in isentropic flows or even flow separation in viscous flows require an accurate and low dissipative numerical scheme. The first order kinetic flux vector splitting (KFVS) method has been found to be very robust but suffers from the problem of having much more numerical diffusion than required, resulting in inaccurate computation of the above flow features. However, numerical dissipation can be reduced by refining the grid or by using higher order kinetic schemes. In flows with strong shock waves, the higher order schemes require limiters, which reduce the local order of accuracy to first order, resulting in degradation of flow features in many cases. Further, these schemes require more points in the stencil and hence consume more computational time and memory. In this paper, we present a low dissipative modified KFVS (m-KFVS) method which leads to improved splitting of inviscid fluxes. The m-KFVS method captures the above flow features more accurately compared to first order KFVS and the results are comparable to second order accurate KFVS method, by still using the first order stencil. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A continuum model based on the critical-state theory of soil mechanics is used to generate stress, density, and velocity profiles, and to compute discharge rates for the flow of granular material in a mass flow bunker. The bin–hopper transition region is idealized as a shock across which all the variables change discontinuously. Comparison with the work of Michalowski (1987) shows that his experimentally determined rupture layer lies between his prediction and that of the present theory. However, it resembles the former more closely. The conventional condition involving a traction-free surface at the hopper exit is abandoned in favour of an exit shock below which the material falls vertically with zero frictional stress. The basic equations, which are not classifiable under any of the standard types, require excessive computational time. This problem is alleviated by the introduction of the Mohr–Coulomb approximation (MCA). The stress, density, and velocity profiles obtained by integration of the MCA converge to asymptotic fields on moving down the hopper. Expressions for these fields are derived by a perturbation method. Computational difficulties are encountered for bunkers with wall angles θw [gt-or-equal, slanted] 15° these are overcome by altering the initial conditions. Predicted discharge rates lie significantly below the measured values of Nguyen et al. (1980), ranging from 38% at θw = 15° to 59% at θw = 32°. The poor prediction appears to be largely due to the exit condition used here. Paradoxically, incompressible discharge rates lie closer to the measured values. An approximate semi-analytical expression for the discharge rate is obtained, which predicts values within 9% of the exact (numerical) ones in the compressible case, and 11% in the incompressible case. The approximate analysis also suggests that inclusion of density variation decreases the discharge rate. This is borne out by the exact (numerical) results – for the parameter values investigated, the compressible discharge rate is about 10% lower than the incompressible value. A preliminary comparison of the predicted density profiles with the measurements of Fickie et al. (1989) shows that the material within the hopper dilates more strongly than predicted. Surprisingly, just below the exit slot, there is good agreement between theory and experiment.
Resumo:
Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory based eight-node rectangular plate bending element (MRP8) using integrated Force Method (IFM) are presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are applicable to plate bending problems with square/rectangular boundaries, they reduce the computational time significantly and give more exact solutions. Presented closed form solutions are validated by solving large number of standard square/rectangular plate bending benchmark problems for deflections and moments and the results are compared with those of similar displacement-based eight-node quadrilateral plate bending elements available in the literature. The results are also compared with the exact solutions.
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.
Resumo:
Background: Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST. Methodology/Principal Findings: We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of similar to 100% and Mathew's correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families. Conclusions/Significance: Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the `bridging' role of related families.
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.
Resumo:
Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.
Resumo:
This paper proposes a sparse modeling approach to solve ordinal regression problems using Gaussian processes (GP). Designing a sparse GP model is important from training time and inference time viewpoints. We first propose a variant of the Gaussian process ordinal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It performs model selection using the leave-one-out cross-validation (LOO-CV) technique. We then provide an approach to design a sparse model for GPOR. The sparse GPOR model reduces computational time and storage requirements. Further, it provides faster inference. We compare the proposed approaches with the state-of-the-art GPOR approach on some benchmark data sets. Experimental results show that the proposed approaches are competitive.
Minimizing total weighted tardiness on heterogeneous batch processors with incompatible job families
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted tardiness. The background for the paper is derived from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real-life scenarios like unequal release times, incompatible job families, nonidentical job sizes, heterogeneous batch processors, and allowance for job splitting have been considered. We have developed a mathematical model which takes into account dynamic starting conditions. The problem considered in this study is NP-hard in nature, and hence heuristic algorithms have been proposed to address it. For real-life large-size problems, the performance of the proposed heuristic algorithms is evaluated using the method of estimated optimal solution available in literature. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal statistically estimated solutions in very reasonable computational time.
Resumo:
The recently developed reference-command tracking version of model predictive static programming (MPSP) is successfully applied to a single-stage closed grinding mill circuit. MPSP is an innovative optimal control technique that combines the philosophies of model predictive control (MPC) and approximate dynamic programming. The performance of the proposed MPSP control technique, which can be viewed as a `new paradigm' under the nonlinear MPC philosophy, is compared to the performance of a standard nonlinear MPC technique applied to the same plant for the same conditions. Results show that the MPSP control technique is more than capable of tracking the desired set-point in the presence of model-plant mismatch, disturbances and measurement noise. The performance of MPSP and nonlinear MPC compare very well, with definite advantages offered by MPSP. The computational speed of MPSP is increased through a sequence of innovations such as the conversion of the dynamic optimization problem to a low-dimensional static optimization problem, the recursive computation of sensitivity matrices and using a closed form expression to update the control. To alleviate the burden on the optimization procedure in standard MPC, the control horizon is normally restricted. However, in the MPSP technique the control horizon is extended to the prediction horizon with a minor increase in the computational time. Furthermore, the MPSP technique generally takes only a couple of iterations to converge, even when input constraints are applied. Therefore, MPSP can be regarded as a potential candidate for online applications of the nonlinear MPC philosophy to real-world industrial process plants. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.
Resumo:
Gas film lubrication of a three-dimensional flat read-write head slider is calculated using the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method, respectively. The pressure distributions on the head slider surface at different velocities and flying heights obtained by the two methods are in excellent agreement. IP method is also employed to deal with head slider with three-dimensional complex configuration. The pressure distribution on the head slider surface and the net lifting force obtained by the IP method also agree well with those of DSMC method. Much less (of the order about 10(2) less) computational time (the sum of the time used to reach a steady stage and the time used in sampling process) is needed by the IP method than the DSMC method and such an advantage is more remarkable as the gas velocity decreases.
Resumo:
215 p.