807 resultados para Composite laminates
Resumo:
The continuous use of structural polymer composites in aeronautical industry has required the development of repairing techniques of damages found in different types of laminates. The most usually adopted procedure to investigate the repair of composite laminates has been by repairing damages simulated in laminated composite specimens. This work shows the influence of structural repair technique on mechanical properties of a typical carbon fiber/epoxy laminate used in aerospace industry. When analyzed by tensile test, the laminates with and without repair present tensile strength values of 670 and 892 MPa, respectively, and tensile modulus of 53.0 and 67.2 GPa, respectively. By this result, it is possible to observe a decrease of the measured mechanical properties of the repaired composites. When submitted to fatigue test, it is observed that in loads higher than 250 MPa, this laminate presents a low life cycle (lower than 400,000 cycles). The fatigue performance of both laminates is comparable, but the non-repaired laminate presented higher tensile and fatigue resistance when compared with the repaired laminate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/ aeronautical industry. Aiming this objective, a new lightweight Fiber/ Metal Laminate (FML) has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.
Resumo:
In recent years the aeronautic industries has increased investment in areas of technological research aiming at materials that offer better performance, safety, weight reduction and fuel consumption. For this reason the most studied materials are polymeric materials, due to their higher mechanical strength and higher stiffness. This work evaluated characteristics of two composite laminates produced from the same process, but they differed only in regions where the resin was injected and the vacuum position. The composite laminates were SC-79 resin reinforced with glass fiber fabric (plain weave) processed via VARTM. For this reason the material was subjected to mechanical tests such as: tensile, and fatigue following standards ASTM D 3039 and ASTM D 3479, respectively. The latter was observed the S-N curve. It was performed the ultrassonic C-scan analysis to check impregnation of the fiber. Considering that the process was the same for the two laminates, with small variations in the injection and in vacum ports, it was expected to find similar characteristics
Resumo:
In order to study resin distribution and homogeneity of composite laminates manufactured by RTM, it was used CYCOM 890 monolithic toughened epoxy as a matrix with two different configurations of intermediated modulus (IM) carbon fibers: Satin Weave (5HS) and non crimp fabric (NCF). The injection parameters were defined based on Thermo Gravimetric Analysis (TG), Differential Scanning Calorimetry (DSC) and rheological analysis. After processing the material, the resin/fiber impregnation was studied using ultrasonic test, Thermo Gravimetric Analysis, Differential Scanning Calorimetry, Dynamic Mechanical Analysis (DMA) and flexural tests. Therefore, it was able to observe an internal residual stress during the cooling process in both laminates, higher in the composite using NCF fabric due to the lack of symmetry, although a good proportion of fiber/matrix has been verified by the lower values of flexural modulus deviation. The DMA enabled the visualization of glass transition and its association with the inter and intra molecular interaction and movement, in which the NCF composite presented better permeability due to the lowest temperature of glass transition, when compared to the Satin Weave composite
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
L’utilizzo degli FRP (Fiber Reinforced Polymer) nel campo dell’ingegneria civile riguarda essenzialmente il settore del restauro delle strutture degradate o danneggiate e quello dell’adeguamento statico delle strutture edificate in zona sismica; in questi settori è evidente la difficoltà operativa alla quale si va in contro se si volessero utilizzare tecniche di intervento che sfruttano materiali tradizionali. I motivi per cui è opportuno intervenire con sistemi compositi fibrosi sono: • l’estrema leggerezza del rinforzo, da cui ne deriva un incremento pressoché nullo delle masse sismiche ed allo stesso tempo un considerevole aumento della duttilità strutturale; • messa in opera senza l’ausilio di particolari attrezzature da un numero limitato di operatori, da cui un minore costo della mano d’opera; • posizionamento in tempi brevi e spesso senza interrompere l’esercizio della struttura. Il parametro principale che definisce le caratteristiche di un rinforzo fibroso non è la resistenza a trazione, che risulta essere ben al di sopra dei tassi di lavoro cui sono soggette le fibre, bensì il modulo elastico, di fatti, più tale valore è elevato maggiore sarà il contributo irrigidente che il rinforzo potrà fornire all’elemento strutturale sul quale è applicato. Generalmente per il rinforzo di strutture in c.a. si preferiscono fibre sia con resistenza a trazione medio-alta (>2000 MPa) che con modulo elastico medio-alto (E=170-250 GPa), mentre per il recupero degli edifici in muratura o con struttura in legno si scelgono fibre con modulo di elasticità più basso (E≤80 GPa) tipo quelle aramidiche che meglio si accordano con la rigidezza propria del supporto rinforzato. In questo contesto, ormai ampliamente ben disposto nei confronti dei compositi, si affacciano ora nuove generazioni di rinforzi. A gli ormai “classici” FRP, realizzati con fibre di carbonio o fibre di vetro accoppiate a matrici organiche (resine epossidiche), si affiancano gli FRCM (Fiber Reinforced Cementitious Matrix), i TRM (Textile Reinforced Mortars) e gli SRG (Steel Reinforced Grout) che sfruttano sia le eccezionali proprietà di fibre di nuova concezione come quelle in PBO (Poliparafenilenbenzobisoxazolo), sia un materiale come l’acciaio, che, per quanto comune nel campo dell’edilizia, viene caratterizzato da lavorazioni innovative che ne migliorano le prestazioni meccaniche. Tutte queste nuove tipologie di compositi, nonostante siano state annoverate con nomenclature così differenti, sono però accomunate dell’elemento che ne permette il funzionamento e l’adesione al supporto: la matrice cementizia
Resumo:
El uso de materiales compuestos para el refuerzo, reparación y rehabilitación de estructuras de hormigón se ha convertido en una técnica muy utilizada en la última década. Con independencia de la técnica del refuerzo, uno de los principales condicionantes del diseño es el fallo de la adherencia entre el hormigón y el material compuesto, atribuida generalmente a las tensiones en la interfaz de estos materiales. Las propiedades mecánicas del hormigón y de los materiales compuestos son muy distintas. Los materiales compuestos comúnmente utilizados en ingeniería civil poseen alta resistencia a tracción y tienen un comportamiento elástico y lineal hasta la rotura, lo cual, en contraste con el ampliamente conocido comportamiento del hormigón, genera una clara incompatibilidad para soportar esfuerzos de forma conjunta. Esta incompatibilidad conduce a fallos relacionados con el despegue del material compuesto del sustrato de hormigón. En vigas de hormigón reforzadas a flexión o a cortante, el despegue del material compuesto es un fenómeno que frecuentemente condiciona la capacidad portante del elemento. Existen dos zonas potenciales de iniciación del despegue: los extremos y la zona entre fisuras de flexión o de flexión-cortante. En el primer caso, la experiencia a través de los últimos años ha demostrado que se puede evitar prolongando el refuerzo hasta los apoyos o mediante el empleo de algún sistema de anclaje. Sin embargo, las recomendaciones para evitar el segundo caso de despegue aún se encuentran lejos de poder prever el fallo de forma eficiente. La necesidad de medir la adherencia experimentalmente de materiales FRP adheridos al hormigón ha dado lugar a desarrollar diversos métodos por la comunidad de investigadores. De estas campañas experimentales surgieron modelos para el pronóstico de la resistencia de adherencia, longitud efectiva y relación tensión-deslizamiento. En la presente tesis se propone un ensayo de beam-test, similar al utilizado para medir la adherencia de barras de acero, para determinar las características de adherencia del FRP al variar la resistencia del hormigón y el espesor del adhesivo. A la vista de los resultados, se considera que este ensayo puede ser utilizado para investigar diferentes tipos de adhesivos y otros métodos de aplicación, dado que representa con mayor realidad el comportamiento en vigas reforzadas. Los resultados experimentales se trasladan a la comprobación del fallo por despegue en la región de fisuras de flexión o flexión cortante en vigas de hormigón presentando buena concordancia. Los resultados condujeron a la propuesta de que la limitación de la deformación constituye una alternativa simple y eficiente para prever el citado modo de fallo. Con base en las vigas analizadas, se propone una nueva expresión para el cálculo de la limitación de la deformación del laminado y se lleva a cabo una comparación entre los modelos existentes mediante un análisis estadístico para evaluar su precisión. Abstract The use of composite materials for strengthening, repairing or rehabilitating concrete structures has become more and more popular in the last ten years. Irrespective of the type of strengthening used, design is conditioned, among others, by concrete-composite bond failure, normally attributed to stresses at the interface between these two materials. The mechanical properties of concrete and composite materials are very different. Composite materials commonly used in civil engineering possess high tensile strength (both static and long term) and they are linear elastic to failure, which, in contrast to the widely known behavior of concrete, there is a clear incompatibility which leads to bond-related failures. Bond failure in the composite material in bending- or shear-strengthened beams often controls bearing capacity of the strengthened member. Debonding failure of RC beams strengthened in bending by externally-bonded composite laminates takes place either, at the end (plate end debonding) or at flexure or flexure-shear cracks (intermediate crack debonding). In the first case, the experience over the past years has shown that this can be avoided by extending laminates up to the supports or by using an anchoring system. However, recommendations for the second case are still considered far from predicting failure efficiently. The need to experimentally measure FRP bonding to concrete has induced the scientific community to develop test methods for that purpose. Experimental campaigns, in turn, have given rise to models for predicting bond strength, effective length and the stress-slip relationship. The beam-type test proposed and used in this thesis to determine the bonding characteristics of FRP at varying concrete strengths and adhesive thicknesses was similar to the test used for measuring steel reinforcement to concrete bonding conditions. In light of the findings, this test was deemed to be usable to study different types of adhesives and application methods, since it reflects the behavior of FRP in strengthened beams more accurately than the procedures presently in place. Experimental results are transferred to the verification of peeling-off at flexure or flexure-shear cracks, presenting a good general agreement. Findings led to the conclusion that the strain limitation of laminate produces accurate predictions of intermediate crack debonding. A new model for strain limitation is proposed. Finally, a comprehensive evaluation based on a statistical analysis among existing models is carried out in order to assess their accuracy.
Resumo:
Tradicionalmente, la fabricación de materiales compuestos de altas prestaciones se lleva a cabo en autoclave mediante la consolidación de preimpregnados a través de la aplicación simultánea de altas presiones y temperatura. Las elevadas presiones empleadas en autoclave reducen la porosidad de los componentes garantizando unas buenas propiedades mecánicas. Sin embargo, este sistema de fabricación conlleva tiempos de producción largos y grandes inversiones en equipamiento lo que restringe su aplicación a otros sectores alejados del sector aeronáutico. Este hecho ha generado una creciente demanda de sistemas de fabricación alternativos al autoclave. Aunque estos sistemas son capaces de reducir los tiempos de producción y el gasto energético, por lo general, dan lugar a materiales con menores prestaciones mecánicas debido a que se reduce la compactación del material al aplicar presiones mas bajas y, por tanto, la fracción volumétrica de fibras, y disminuye el control de la porosidad durante el proceso. Los modelos numéricos existentes permiten conocer los fundamentos de los mecanismos de crecimiento de poros durante la fabricación de materiales compuestos de matriz polimérica mediante autoclave. Dichos modelos analizan el comportamiento de pequeños poros esféricos embebidos en una resina viscosa. Su validez no ha sido probada, sin embargo, para la morfología típica observada en materiales compuestos fabricados fuera de autoclave, consistente en poros cilíndricos y alargados embebidos en resina y rodeados de fibras continuas. Por otro lado, aunque existe una clara evidencia experimental del efecto pernicioso de la porosidad en las prestaciones mecánicas de los materiales compuestos, no existe información detallada sobre la influencia de las condiciones de procesado en la forma, fracción volumétrica y distribución espacial de los poros en los materiales compuestos. Las técnicas de análisis convencionales para la caracterización microestructural de los materiales compuestos proporcionan información en dos dimensiones (2D) (microscopía óptica y electrónica, radiografía de rayos X, ultrasonidos, emisión acústica) y sólo algunas son adecuadas para el análisis de la porosidad. En esta tesis, se ha analizado el efecto de ciclo de curado en el desarrollo de los poros durante la consolidación de preimpregnados Hexply AS4/8552 a bajas presiones mediante moldeo por compresión, en paneles unidireccionales y multiaxiales utilizando tres ciclos de curado diferentes. Dichos ciclos fueron cuidadosamente diseñados de acuerdo a la caracterización térmica y reológica de los preimpregnados. La fracción volumétrica de poros, su forma y distribución espacial se analizaron en detalle mediante tomografía de rayos X. Esta técnica no destructiva ha demostrado su capacidad para analizar la microestructura de materiales compuestos. Se observó, que la porosidad depende en gran medida de la evolución de la viscosidad dinámica a lo largo del ciclo y que la mayoría de la porosidad inicial procedía del aire atrapado durante el apilamiento de las láminas de preimpregnado. En el caso de los laminados multiaxiales, la porosidad también se vio afectada por la secuencia de apilamiento. En general, los poros tenían forma cilíndrica y se estaban orientados en la dirección de las fibras. Además, la proyección de la población de poros a lo largo de la dirección de la fibra reveló la existencia de una estructura celular de un diámetro aproximado de 1 mm. Las paredes de las celdas correspondían con regiones con mayor densidad de fibra mientras que los poros se concentraban en el interior de las celdas. Esta distribución de la porosidad es el resultado de una consolidación no homogenea. Toda esta información es crítica a la hora de optimizar las condiciones de procesado y proporcionar datos de partida para desarrollar herramientas de simulación de los procesos de fabricación de materiales compuestos fuera de autoclave. Adicionalmente, se determinaron ciertas propiedades mecánicas dependientes de la matriz termoestable con objeto de establecer la relación entre condiciones de procesado y las prestaciones mecánicas. En el caso de los laminados unidireccionales, la resistencia interlaminar depende de la porosidad para fracciones volumétricas de poros superiores 1%. Las mismas tendencias se observaron en el caso de GIIc mientras GIc no se vio afectada por la porosidad. En el caso de los laminados multiaxiales se evaluó la influencia de la porosidad en la resistencia a compresión, la resistencia a impacto a baja velocidad y la resistencia a copresión después de impacto. La resistencia a compresión se redujo con el contenido en poros, pero éste no influyó significativamente en la resistencia a compresión despues de impacto ya que quedó enmascarada por otros factores como la secuencia de apilamiento o la magnitud del daño generado tras el impacto. Finalmente, el efecto de las condiciones de fabricación en el proceso de compactación mediante moldeo por compresión en laminados unidireccionales fue simulado mediante el método de los elementos finitos en una primera aproximación para simular la fabricación de materiales compuestos fuera de autoclave. Los parámetros del modelo se obtuvieron mediante experimentos térmicos y reológicos del preimpregnado Hexply AS4/8552. Los resultados obtenidos en la predicción de la reducción de espesor durante el proceso de consolidación concordaron razonablemente con los resultados experimentales. Manufacturing of high performance polymer-matrix composites is normally carried out by means of autoclave using prepreg tapes stacked and consolidated under the simultaneous application of pressure and temperature. High autoclave pressures reduce the porosity in the laminate and ensure excellent mechanical properties. However, this manufacturing route is expensive in terms of capital investment and processing time, hindering its application in many industrial sectors. This fact has driven the demand of alternative out-of-autoclave processing routes. These techniques claim to produce composite parts faster and at lower cost but the mechanical performance is also reduced due to the lower fiber content and to the higher porosity. Corrient numerical models are able to simulate the mechanisms of void growth in polymer-matrix composites processed in autoclave. However these models are restricted to small spherical voids surrounded by a viscous resin. Their validity is not proved for long cylindrical voids in a viscous matrix surrounded by aligned fibers, the standard morphology observed in out-of-autoclave composites. In addition, there is an experimental evidence of the detrimental effect of voids on the mechanical performance of composites but, there is detailed information regarding the influence of curing conditions on the actual volume fraction, shape and spatial distribution of voids within the laminate. The standard techniques of microstructural characterization of composites (optical or electron microscopy, X-ray radiography, ultrasonics) provide information in two dimensions and are not always suitable to determine the porosity or void population. Moreover, they can not provide 3D information. The effect of curing cycle on the development of voids during consolidation of AS4/8552 prepregs at low pressure by compression molding was studied in unidirectional and multiaxial panels. They were manufactured using three different curing cycles carefully designed following the rheological and thermal analysis of the raw prepregs. The void volume fraction, shape and spatial distribution were analyzed in detail by means of X-ray computed microtomography, which has demonstrated its potential for analyzing the microstructural features of composites. It was demonstrated that the final void volume fraction depended on the evolution of the dynamic viscosity throughout the cycle. Most of the initial voids were the result of air entrapment and wrinkles created during lay-up. Differences in the final void volume fraction depended on the processing conditions for unidirectional and multiaxial panels. Voids were rod-like shaped and were oriented parallel to the fibers and concentrated in channels along the fiber orientation. X-ray computer tomography analysis of voids along the fiber direction showed a cellular structure with an approximate cell diameter of 1 mm. The cell walls were fiber-rich regions and porosity was localized at the center of the cells. This porosity distribution within the laminate was the result of inhomogeneous consolidation. This information is critical to optimize processing parameters and to provide inputs for virtual testing and virtual processing tools. In addition, the matrix-controlled mechanical properties of the panels were measured in order to establish the relationship between processing conditions and mechanical performance. The interlaminar shear strength (ILSS) and the interlaminar toughness (GIc and GIIc) were selected to evaluate the effect of porosity on the mechanical performance of unidirectional panels. The ILSS was strongly affected by the porosity when the void contents was higher than 1%. The same trends were observed in the case of GIIc while GIc was insensitive to the void volume fraction. Additionally, the mechanical performance of multiaxial panels in compression, low velocity impact and compression after impact (CAI) was measured to address the effect of processing conditions. The compressive strength decreased with porosity and ply-clustering. However, the porosity did not influence the impact resistance and the coompression after impact strength because the effect of porosity was masked by other factors as the damage due to impact or the laminate lay-up. Finally, the effect of the processing conditions on the compaction behavior of unidirectional AS4/8552 panels manufactured by compression moulding was simulated using the finite element method, as a first approximation to more complex and accurate models for out-of autoclave curing and consolidation of composite laminates. The model parameters were obtained from rheological and thermo-mechanical experiments carried out in raw prepreg samples. The predictions of the thickness change during consolidation were in reasonable agreement with the experimental results.
Resumo:
Nanoscale Al/SiC composite laminates have unique properties, such as high strength, high toughness, and damage tolerance. In this article, the high-temperature nanoindentation response of Al/SiC nanolaminates is explored from room temperature up to 300_C. Selected nanoindentations were analyzed postmortem using focused ion beam and transmission electron microscopy to ascertain the microstructural changes and the deformation mechanisms operating at high temperature.
Resumo:
Composite laminates on the nanoscale have shown superior hardness and toughness, but little is known about their high temperature behavior. The mechanical properties (elastic modulus and hardness) were measured as a function of temperature by means of nanoindentation in Al/SiC nanolaminates, a model metal–ceramic nanolaminate fabricated by physical vapor deposition. The influence of the Al and SiC volume fraction and layer thicknesses was determined between room temperature and 150 °C and, the deformation modes were analyzed by transmission electron microscopy, using a focused ion beam to prepare cross-sections through selected indents. It was found that ambient temperature deformation was controlled by the plastic flow of the Al layers, constrained by the SiC, and the elastic bending of the SiC layers. The reduction in hardness with temperature showed evidence of the development of interface-mediated deformation mechanisms, which led to a clear influence of layer thickness on the hardness.
Resumo:
Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough understanding of damage mechanisms associated with crush events. This paper details the manufacture, testing and modelling of self-supporting corrugated-shaped thermoplastic composite specimens for crashworthiness assessment. These specimens demonstrated a 57.3% higher specific energy absorption compared to identical specimen made from thermoset composites. The corresponding damage mechanisms were investigated in-situ using digital microscopy and post analysed using Scanning Electron Microscopy (SEM). Splaying and fragmentation modes were the 2 primary failure modes involving fibre breakage, matrix cracking and delamination. A mesoscale composite damage model, with new non-linear shear constitutive laws, which combines a range of novel techniques to accurately capture the material response under crushing, is presented. The force-displacement curves, damage parameter maps and dissipated energy, obtained from the numerical analysis, are shown to be in a good qualitative and quantitative agreement with experimental results. The proposed approach could significantly reduce the extent of physical testing required in the development of crashworthy structures.
Resumo:
The gradual replacement of conventional materials by the ones called composite materials is becoming a concern about the response of these composites against adverse environmental conditions, such as ultraviolet radiation, high temperature and moist. Also the search for new composite using natural fibers or a blend of it with synthetic fibers as reinforcement has been studied. In this sense, this research begins with a thorough study of microstructural characterization of licuri fiber, as a proposal of alternative reinforcement to polymeric composites. Thus, a study about the development of two composite laminates was done. The first one, involving only the fiber of licuri and the second comprising a hybrid composite based of fiber glass E and the fiber of licuri, in order to know the performance of the fiber when of fiber across the hybridization process. The laminates were made in the form of plates using the tereftálica ortho-polyester resin as matrix. The composite laminate made only by licuri fiber had two reinforcing fabric layers of unidirectional licuri and the hybrid composite had two reinforcing layers of unidirectional licuri fabric and three layers of fiber short glass-E mat. Finally, both laminates was exposed to aging acceleration in order to study the influence of environmental degradation involving the mechanical properties and fracture characteristics thereof. Regarding the mechanical properties of composites, these were determined through uniaxial tensile tests, uniaxial compression and three bending points for both laminates in original state, and uniaxial tensile tests and three bending points after accelerated aging. As regards the study of structural degradation due to aging of the laminates, it was carried out based on microscopic analysis and microstructure, as well as measuring weight loss. The characteristics of the fracture was performed by macroscopic and microscopic (optical and SEM) analysis. In general, the laminated composites based on fiber licuri showed some advantages in their responses to environmental aging. These advantages are observed in the behavior related to stiffness as well as the microstructural degradation and photo-oxidation processes. However, the structural integrity of this laminate was more affected in case the action of uniaxial tensile loads, where it was noted a lower rate of withholding his last resistance property
Resumo:
Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole
Resumo:
Monolithic materials cannot always satisfy the demands of today’s advanced requirements. Only by combining several materials at different length-scales, as nature does, the requested performances can be met. Polymer nanocomposites are intended to overcome the common drawbacks of pristine polymers, with a multidisciplinary collaboration of material science with chemistry, engineering, and nanotechnology. These materials are an active combination of polymers and nanomaterials, where at least one phase lies in the nanometer range. By mimicking nature’s materials is possible to develop new nanocomposites for structural applications demanding combinations of strength and toughness. In this perspective, nanofibers obtained by electrospinning have been increasingly adopted in the last decade to improve the fracture toughness of Fiber Reinforced Plastic (FRP) laminates. Although nanofibers have already found applications in various fields, their widespread introduction in the industrial context is still a long way to go. This thesis aims to develop methodologies and models able to predict the behaviour of nanofibrous-reinforced polymers, paving the way for their practical engineering applications. It consists of two main parts. The first one investigates the mechanisms that act at the nanoscale, systematically evaluating the mechanical properties of both the nanofibrous reinforcement phase (Chapter 1) and hosting polymeric matrix (Chapter 2). The second part deals with the implementation of different types of nanofibers for novel pioneering applications, trying to combine the well-known fracture toughness enhancement in composite laminates with improving other mechanical properties or including novel functionalities. Chapter 3 reports the development of novel adhesive carriers made of nylon 6,6 nanofibrous mats to increase the fracture toughness of epoxy-bonded joints. In Chapter 4, recently developed rubbery nanofibers are used to enhance the damping properties of unidirectional carbon fiber laminates. Lastly, in Chapter 5, a novel self-sensing composite laminate capable of detecting impacts on its surface using PVDF-TrFE piezoelectric nanofibers is presented.