920 resultados para Component deterioration
Resumo:
A series of laboratory and glasshouse experiments were undertaken to assess the potential for incorporation of fly ash in soilless potting substrates. The physical and chemical properties of a commercially available bark based substrate, the University of California (UC) 1:1 peat:sand mix and a range uf test substrates containing fly ash were characterised. In test mixtures, fly ash was substituted for a portion of either the peat or sand component of the UC mix, at rates of 10, 20, 30 and 50% of the mix volume, Incorporation of fly ash greatly increased the plant available water capacity (10-1500 kPa) of the substrate. However, high pH, increased substrate strength and reduced air-filled porosity were considered adverse effects, particularly at ash rates > 20%. The growth of tomato (Lycopersicon esculentum), petunia (Petunia x hybrida grandiflora) and Boston fern (Nephrolepis exaltata) in the substrates was assessed. Two watering regimes, capillary watering and irregular hosing, were used to identify effects of available water capacity on plant growth, but no effect was identified. Test mixtures containing fly ash as 20% of the substrate volume produced growth equal to that in the UC mix, with substrates containing 10% ash producing significantly greater growth of tomato and petunia. At rates of incorporation > 20% reduced plant growth was attributed to both adverse physical and chemical characteristics of the substrate. As fly ash is available at low cost and can be successfully substituted for a considerable portion of the expensive peat component, its use at low application rates in potting substrates may be desirable from an economic viewpoint.
Resumo:
In this paper use consider the problem of providing standard errors of the component means in normal mixture models fitted to univariate or multivariate data by maximum likelihood via the EM algorithm. Two methods of estimation of the standard errors are considered: the standard information-based method and the computationally-intensive bootstrap method. They are compared empirically by their application to three real data sets and by a small-scale Monte Carlo experiment.
Resumo:
Background/Aims: Acinar cell carcinomas are uncommon malignant tumors of the pancreas, accounting for 1-2% of all the cases of exocrine pancreatic tumor. Some authors have estimated acinar cell tumors to be as aggressive as ductal adenocarcinoma of the pancreas whereas other series showed acinar cell tumors to have a favorable clinical outcome. This discrepancy in prognosis may be related to the cellular components of the tumor. Methodology: With the aim to evaluate the possible relationship between the presence of neuroendocrine differentiation and behavior of these tumors, the authors reviewed all patients presenting acinar cell carcinoma of the pancreas in the last 5 years with emphasis in the immunohistochemical evaluation. Results: Four patients presented neuroendocrine differentiation on immunohistochemical evaluation and had a more benign outcome. Two patients without neuroendocrine component had a disseminated disease at presentation. This data suggests that this tumor is less aggressive than ductal adenocarcinoma and even with nodal involvement, long term survival after complete resection can be achieved. Conclusions: It is possible that the absence of neuroendocrine component may be related to a less favorable outcome and adjuvant therapy may be necessary. Due to the rarity of this pancreatic tumor, this relationship remains to be confirmed with a multicentric study including a larger number of patients.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
Cytogenetic Studies of childhood ovary tumors have been poorly described. in the present article, the cytogenetic findings of an ovarian teratoma with malignant germ cell (yolk-sac) component occurring in an 8-year-old female are detailed. GTG-banding showed a karyotype of 46,XX, t(3;20)(q27;q13.3) [4]/46,XX, del3q27 [3]/46,XX [30]. Previous Studies have demonstrated common sites of loss of heterozygosity at 3q27-q28 region in different types of cancer, suggesting the presence of tumor Suppressor genes within this region. Pediatr Blood Cancer 2009;52:398-401. (C) 2008 Wiley-Liss, Inc.
Resumo:
OBJECTIVES This study aimed at analyzing the association between myocardial perfusion changes and the progression of left ventricular systolic dysfunction in patients with chronic Chagas` cardiomyopathy (CCC). BACKGROUND Pathological and experimental studies have suggested that coronary microvascular derangement, and consequent myocardial perfusion disturbance, may cause myocardial damage in CCC. METHODS Patients with CCC (n = 36, ages 57 +/- 10 years, 17 males), previously having undergone myocardial perfusion single-positron emission computed tomography and 2-dimensional echocardiography, prospectively underwent a new evaluation after an interval of 5.6 +/- 1.5 years. Stress and rest myocardial perfusion defects were quantified using polar maps and normal database comparison. RESULTS Between the first and final evaluations, a significant reduction of left ventricular ejection fraction was observed (55 +/- 11% and 50 +/- 13%, respectively; p = 0.0001), as well as an increase in the area of the perfusion defect at rest (18.8 +/- 14.1% and 26.5 +/- 19.1%, respectively; p = 0.0075). The individual increase in the perfusion defect area at rest was significantly correlated with the reduction in left ventricular ejection fraction (R = 0.4211, p = 0.0105). Twenty patients with normal coronary arteries (56%) showed reversible perfusion defects involving 10.2 +/- 9.7% of the left ventricle. A significant topographic correlation was found between reversible defects and the appearance of new rest perfusion defects at the final evaluation. Of the 47 segments presenting reversible perfusion defects in the initial study, 32 (68%) progressed to perfusion defects at rest, and of the 469 segments not showing reversibility in the initial study, only 41 (8.7%) had the same progression (p < 0.0001, Fisher exact test). CONCLUSIONS In CCC patients, the progression of left ventricular systolic dysfunction was associated with both the presence of reversible perfusion defects and the increase in perfusion defects at rest. These results support the notion that myocardial perfusion disturbances participate in the pathogenesis of myocardial injury in CCC. (J Am Coll Cardiol Img 2009;2:164-72) (c) 2009 by the American College of Cardiology Foundation
Resumo:
The diagonal band of Broca (DBB) is involved in cardiovascular control in rats, In the present Study, we report the effect of acute and reversible neurotransmission inhibition in the DBB by bilateral microinjection of the nonselective neurotransmission blocker CoCl(2) (1 mM, 100 nL) on the cardiac baroreflex response in unanesthetized rats. Local DBB neurotransmission inhibition did not affect baseline values of either blood pressure or heart rate, Suggesting no tonic DBB influence oil cardiovascular system activity. However, CoCl(2) microinjections enhanced both the reflex bradycardia associated with blood pressure increases caused by i.v. infusion of phenylephrine and tachycardiac response evoked by blood pressure decreases caused by i.v. infusion of sodium nitroprusside. An increase in baroreflex gain was also observed. Baroreflex returned to control values 60 min after CoCl(2) microinjections, confirming its reversible effect. In conclusion, our data suggest that synapses within DBB have a tonic inhibitory influence on both the cardiac parasympathetic and sympathetic components of the baroreflex. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The bed nucleus of stria terminalis (BST) has a tonic modulating role on the baroreflex parasympathetic component. In the present study, we verified that local BST-adrenoceptors modulate baroreflex-evoked bradycardiac responses in unanesthetized rats. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL) into the BST increased the gain of reflex bradycardia in response to mean arterial pressure increases caused by intravenous (i.v.) infusion of phenylephrine, suggesting that BST alpha(1)-adrenoceptors modulate baroreflex bradycardiac response. Bilateral microinjection of either the selective alpha(2)-adrenoceptor antagonist RX821002 (15 nmol/100 nL) or the non-selective beta-adrenoceptor antagonist propranolol (15 nmol/100 nL) into the BST had not affected baroreflex bradycardia. Animals were pretreated intravenously with the cholinergic muscarinic receptor antagonist homatropine methyl bromide (HMB, 1.5 mg/Kg) to test the hypothesis that activation of alpha(1)-adrenoceptors in the BST would modulate the baroreflex parasympathetic component. Baroreflex bradycardiac responses evoked before and after BST treatment with WB4101 were no longer different when rats were pretreated with HMB. These results suggest that parasympathetic activation accounts for the effects saw after BST pharmacological manipulation and ruling out the possibility of a sympathetic withdraw. In conclusion, our data point out that local alpha(1)-adrenoceptors mediate the BST tonic influence on the baroreflex bradycardiac response modulating parasympathetic cardiac activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.
Resumo:
In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.