914 resultados para Complex network. Optimal path. Optimal path cracks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a study of social networks based on analysis of family names is presented. A basic approach to the mathematical formalism of graphs is developed and then main theoretical models for complex networks are presented aiming to support the analysis of surnames networks models. These, in turn, are worked so as to be drawn leading quantities, such as aggregation coefficient, minimum average path length and connectivity distribution. Based on these quantities, it can be stated that surnames networks are an example of complex network, showing important features such as preferential attachment and small-world character

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metals such as Fe, Cu, Mn, Ni, or Co are essential nutrients, as they are constitutive elements of a significant fraction of cell proteins. Such metals are present in the active site of many enzymes, and also participate as structural elements in different proteins. From a chemical point of view, metals have a defined order of affinity for binding, designated as the Irving-Williams series (Irving and Williams, 1948) Mg2+ menor que Mn2+ menor que Fe2+ menor que Co2+ menor que Ni2+ menor que Cu2+mayor queZn2+ Since cells contain a high number of different proteins harbouring different metal ions, a simplistic model in which proteins are synthesized and metals imported into a ?cytoplasmic soup? cannot explain the final product that we find in the cell. Instead we need to envisage a complex model in which specific ligands are present in definite amounts to leave the right amounts of available metals and protein binding sites, so specific pairs can bind appropriately. A critical control on the amount of ligands and metal present is exerted through specific metal-responsive regulators able to induce the synthesis of the right amount of ligands (essentially metal binding proteins), import and efflux proteins. These systems are adapted to establish the metal-protein equilibria compatible with the formation of the right metalloprotein complexes. Understanding this complex network of interactions is central to the understanding of metal metabolism for the synthesis of metalloenzymes, a key topic in the Rhizobium-legume symbiosis. In the case of the Rhizobium leguminosarum bv viciae (Rlv) UPM791 -Pisum sativum symbiotic system, the concentration of nickel in the plant nutrient solution is a limiting factor for hydrogenase expression, and provision of high amounts of this element to the plant nutrient solution is required to ensure optimal levels of enzyme synthesis (Brito et al., 1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding flow path connectivity within a geothermal reservoir is a critical component for efficiently producing sustained flow rates of hot fluids from the subsurface. I present a new approach for characterizing subsurface fracture connectivity that combines petrographic and cold cathodoluminescence (CL) microscopy with stable isotope analysis (δ18O and δ13C) and clumped isotope (Δ47) thermometry of fracture-filling calcite cements from a geothermal reservoir in northern Nevada. Calcite cement samples were derived from both drill cuttings and core samples taken at various depths from wells within the geothermal field. CL microscopy of some fracture filling cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements are related to fracture opening and fault slip. Variations in trace element composition indicated by the luminescence patterns reflect variations in the composition and source of fluids moving through the fractures as they opened episodically. Calcite δ13C and δ18O results also show significant variation among the sampled cements, reflecting multiple generations of fluids and fracture connectivity. Clumped isotope analyses performed on a subset of the cements analyzed for conventional δ18O and δ13C mostly show calcite growth temperatures around 150°C—above the current ambient rock temperature, which indicates a common temperature trend for the geothermal reservoir. However, calcite cements sampled along faults located within the well field showed both cold (18.7°C) and hot (226.1°C) temperatures. The anomalously cool temperature found along the fault, using estimates from clumped isotope thermometry, suggests a possible connection to surface waters for the geothermal source fluids for this system. This information may indicate that some of the faults within the well field are transporting meteoric water from the surface to be heated at depth, which then is circulated through a complex network of fractures and other faults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last ten years our understanding of early spatial vision has improved enormously. The long-standing model of probability summation amongst multiple independent mechanisms with static output nonlinearities responsible for masking is obsolete. It has been replaced by a much more complex network of additive, suppressive, and facilitatory interactions and nonlinearities across eyes, area, spatial frequency, and orientation that extend well beyond the classical recep-tive field (CRF). A review of a substantial body of psychophysical work performed by ourselves (20 papers), and others, leads us to the following tentative account of the processing path for signal contrast. The first suppression stage is monocular, isotropic, non-adaptable, accelerates with RMS contrast, most potent for low spatial and high temporal frequencies, and extends slightly beyond the CRF. Second and third stages of suppression are difficult to disentangle but are possibly pre- and post-binocular summation, and involve components that are scale invariant, isotropic, anisotropic, chromatic, achromatic, adaptable, interocular, substantially larger than the CRF, and saturated by contrast. The monocular excitatory pathways begin with half-wave rectification, followed by a preliminary stage of half-binocular summation, a square-law transducer, full binocular summation, pooling over phase, cross-mechanism facilitatory interactions, additive noise, linear summation over area, and a slightly uncertain decision-maker. The purpose of each of these interactions is far from clear, but the system benefits from area and binocular summation of weak contrast signals as well as area and ocularity invariances above threshold (a herd of zebras doesn't change its contrast when it increases in number or when you close one eye). One of many remaining challenges is to determine the stage or stages of spatial tuning in the excitatory pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that basic ROC properties which are one of experimental findings underpinning dual-process models of recognition memory can be explained within our one-factor NNAMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal plant growth is the result of the interaction of a complex network of plant hormones and environmental signals. Ascorbic acid (AsA) is a crucial antioxidant in plants and is involved in the regulation of cell division, cell expansion, photosynthesis and hormone biosynthesis. Quantitative analysis of AsA in Arabidopsis thaliana organs was conducted using HPLC with d -isoascorbic acid (Iso-AsA) as an internal standard. Analysis revealed Àuctuations in the levels of AsA in different organs and growth phases when plants were grown under standard conditions. AsA concentrations increased in leaves in direct proportion to leaf size and age. Young siliques (seed set stage) and Àowering buds (open and unopened) showed the highest levels of AsA. A relationship was found between the level of AsA and indole acetic acid (IAA) in leaves, stems, Àowers, and siliques and the highest level of IAA and AsAwere found in the Àowers. In contrast, the lowest level of the plant hormone, salicylic acid, was found in the Àowers and the highest quantity measured in the leaves. Consequently, AsA has been found to be a multifunctional molecule that is involved as a key regulator of plant growth and development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Hardware in the Loop” (HIL) testing is widely used in the automotive industry. The sophisticated electronic control units used for vehicle control are usually tested and evaluated using HIL-simulations. The HIL increases the degree of realistic testing of any system. Moreover, it helps in designing the structure and control of the system under test so that it works effectively in the situations that will be encountered in the system. Due to the size and the complexity of interaction within a power network, most research is based on pure simulation. To validate the performance of physical generator or protection system, most testing is constrained to very simple power network. This research, however, examines a method to test power system hardware within a complex virtual environment using the concept of the HIL. The HIL testing for electronic control units and power systems protection device can be easily performed at signal level. But performance of power systems equipments, such as distributed generation systems can not be evaluated at signal level using HIL testing. The HIL testing for power systems equipments is termed here as ‘Power Network in the Loop’ (PNIL). PNIL testing can only be performed at power level and requires a power amplifier that can amplify the simulation signal to the power level. A power network is divided in two parts. One part represents the Power Network Under Test (PNUT) and the other part represents the rest of the complex network. The complex network is simulated in real time simulator (RTS) while the PNUT is connected to the Voltage Source Converter (VSC) based power amplifier. Two way interaction between the simulator and amplifier is performed using analog to digital (A/D) and digital to analog (D/A) converters. The power amplifier amplifies the current or voltage signal of simulator to the power level and establishes the power level interaction between RTS and PNUT. In the first part of this thesis, design and control of a VSC based power amplifier that can amplify a broadband voltage signal is presented. A new Hybrid Discontinuous Control method is proposed for the amplifier. This amplifier can be used for several power systems applications. In the first part of the thesis, use of this amplifier in DSTATCOM and UPS applications are presented. In the later part of this thesis the solution of network in the loop testing with the help of this amplifier is reported. The experimental setup for PNIL testing is built in the laboratory of Queensland University of Technology and the feasibility of PNIL testing has been evaluated using the experimental studies. In the last section of this thesis a universal load with power regenerative capability is designed. This universal load is used to test the DG system using PNIL concepts. This thesis is composed of published/submitted papers that form the chapters in this dissertation. Each paper has been published or submitted during the period of candidature. Chapter 1 integrates all the papers to provide a coherent view of wide bandwidth switching amplifier and its used in different power systems applications specially for the solution of power systems testing using PNIL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An entirely different approach for localisation of winding deformation based on terminal measurements is presented. Within the context of this study, winding deformation means, a discrete and specific change externally imposed at a particular position on the winding. The proposed method is based on pre-computing and plotting the complex network-function loci e.g. driving-point impedance (DPI)] at a selected frequency, for a meaningful range of values for each element (increasing and decreasing) of the ladder network which represents the winding. This loci diagram is called the nomogram. After introducing a discrete change, amplitude and phase of DPI are measured. By plotting this single measurement on the nomogram, it is possible to estimate the location and identify the extent of change. In contrast to the existing approach, the proposed method is fast, non-iterative and yields reasonably good localisation. Experimental results for actual transformer windings (interleaved and continuous disc) are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we construct (d, r) networks from sequences of different irrational numbers. In detail, segment an irrational number sequence of length M into groups of d digits which represent the nodes while two consecutive groups overlap by r digits (r = 0,1,...,d-1), and the undirected edges indicate the adjacency between two consecutive groups. (3, r) and (4, r) networks are respectively constructed from 14 different irrational numbers and their topological properties are examined. By observation, we find that network topologies change with different values of d, r and even sequence length M instead of the types of irrational numbers, although they share some similar features with traditional random graphs. We make a further investigation to explain these interesting phenomena and propose the identical-degree random graph model. The results presented in this paper provide some insight into distributions of irrational number digits that may help better understanding of the nature of irrational numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density and distribution of spatial samples heavily affect the precision and reliability of estimated population attributes. An optimization method based on Mean of Surface with Nonhomogeneity (MSN) theory has been developed into a computer package with the purpose of improving accuracy in the global estimation of some spatial properties, given a spatial sample distributed over a heterogeneous surface; and in return, for a given variance of estimation, the program can export both the optimal number of sample units needed and their appropriate distribution within a specified research area. (C) 2010 Elsevier Ltd. All rights reserved.