987 resultados para Combustion chambers
Resumo:
A mathematical model is proposed for the evolution of temperature, chemical composition, and energy release in bubbles, clouds, and emulsion phase during combustion of gaseous premixtures of air and propane in a bubbling fluidized bed. The analysis begins as the bubbles are formed at the orifices of the distributor, until they explode inside the bed or emerge at the free surface of the bed. The model also considers the freeboard region of the fluidized bed until the propane is thoroughly burned. It is essentially built upon the quasi-global mechanism of Hautman et al. (1981) and the mass and heat transfer equations from the two-phase model of Davidson and Harrison (1963). The focus is not on a new modeling approach, but on combining the classical models of the kinetics and other diffusional aspects to obtain a better insight into the events occurring inside a fluidized bed reactor. Experimental data are obtained to validate the model by testing the combustion of commercial propane, in a laboratory-scale fluidized bed, using four sand particle sizes: 400–500, 315–400, 250–315, and 200–250 µm. The mole fractions of CO2, CO, and O2 in the flue gases and the temperature of the fluidized bed are measured and compared with the numerical results.
Resumo:
We propose a 3-D gravity model for the volcanic structure of the island of Maio (Cape Verde archipelago) with the objective of solving some open questions concerning the geometry and depth of the intrusive Central Igneous Complex. A gravity survey was made covering almost the entire surface of the island. The gravity data was inverted through a non-linear 3-D approach which provided a model constructed in a random growth process. The residual Bouguer gravity field shows a single positive anomaly presenting an elliptic shape with a NWSE trending long axis. This Bouguer gravity anomaly is slightly off-centred with the island but its outline is concordant with the surface exposure of the Central Igneous Complex. The gravimetric modelling shows a high-density volume whose centre of mass is about 4500 m deep. With increasing depth, and despite the restricted gravimetric resolution, the horizontal sections of the model suggest the presence of two distinct bodies, whose relative position accounts for the elongated shape of the high positive Bouguer gravity anomaly. These bodies are interpreted as magma chambers whose coeval volcanic counterparts are no longer preserved. The orientation defined by the two bodies is similar to that of other structures known in the southern group of the Cape Verde islands, thus suggesting a possible structural control constraining the location of the plutonic intrusions.
Resumo:
The cleaning of syngas is one of the most important challenges in the development of technologies based on gasification of biomass. Tar is an undesired byproduct because, once condensed, it can cause fouling and plugging and damage the downstream equipment. Thermochemical methods for tar destruction, which include catalytic cracking and thermal cracking, are intrinsically attractive because they are energetically efficient and no movable parts are required nor byproducts are produced. The main difficulty with these methods is the tendency for tar to polymerize at high temperatures. An alternative to tar removal is the complete combustion of the syngas in a porous burner directly as it leaves the particle capture system. In this context, the main aim of this study is to evaluate the destruction of the tar present in the syngas from biomass gasification by combustion in porous media. A gas mixture was used to emulate the syngas, which included toluene as a tar surrogate. Initially, CHEMKIN was used to assess the potential of the proposed solution. The calculations revealed the complete destruction of the tar surrogate for a wide range of operating conditions and indicated that the most important reactions in the toluene conversion are C6H5CH3 + OH <-> C6H5CH2 + H2O, C6H5CH3 + OH <-> C6H4CH3 + H2O, and C6H5CH3 + O <-> OC6H4CH3 + H and that the formation of toluene can occur through C6H5CH2 + H <-> C6H5CH3. Subsequently, experimental tests were performed in a porous burner fired with pure methane and syngas for two equivalence ratios and three flow velocities. In these tests, the toluene concentration in the syngas varied from 50 to 200 g/Nm(3). In line with the CHEMKIN calculations, the results revealed that toluene was almost completely destroyed for all tested conditions and that the process did not affect the performance of the porous burner regarding the emissions of CO, hydrocarbons, and NOx.
Resumo:
Thesis submitted to obtain the Doctoral degree in Energy and Bioenergy
Resumo:
Doctoral dissertation for Ph.D. degree in Sustainable Chemistry
Resumo:
This paper presents the conversion process of a traditional Internal Combustion Engine vehicle into an Electric Vehicle. The main constitutive elements of the Electric Vehicle are presented. The developed powertrain uses a three-phase inverter with Field Oriented Control and space vector modulation. The developed on-board batteries charging system can operate in Grid-to-Vehicle and Vehicle-to-Grid modes. The implemented prototypes were tested, and experimental results are presented. The assembly of these prototypes in the vehicle was made in accordance with the Portuguese legislation about vehicles conversion, and the main adopted solutions are presented.
Resumo:
Programa Doutoral em Engenharia Mecânica.
Resumo:
Combustion, Coal, Droplet Combustion, Boudouard Reaction
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2009
Resumo:
Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.
Resumo:
Some years ago, a parish in Geneva decided to reduce heating costs by insulating its church to make it more energy efficient. Three years after the last renovations, it was observed that the internal surfaces of the naves had already become dusty compared with the customary frequency of 10-12 years. Dust even deposited on various surfaces during religious services. Our investigation showed that nearly all the dust found inside the church may in fact be soot from incense and candle combustion. Incense appears to be a significant source of polycyclic aromatic hydrocarbons. With a mechanical ventilation system and petrol lamps resembling candles the problem can be resolved.
Resumo:
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.
Resumo:
We derive analytical expressions for the propagation speed of downward combustion fronts of thin solid fuels with a background flow initially at rest. The classical combustion model for thin solid fuels that consists of five coupled reaction-convection-diffusion equations is here reduced into a single equation with the gas temperature as the single variable. For doing so we apply a two-zone combustion model that divides the system into a preheating region and a pyrolyzing region. The speed of the combustion front is obtained after matching the temperature and its derivative at the location that separates both regions.We also derive a simplified version of this analytical expression expected to be valid for a wide range of cases. Flame front velocities predicted by our analyticalexpressions agree well with experimental data found in the literature for a large variety of cases and substantially improve the results obtained from a previous well-known analytical expression
Resumo:
The most frequently used method to demonstrate testosterone abuse is the determination of the testosterone and epitestosterone concentration ratio (T/E ratio) in urine. Nevertheless, it is known that factors other than testosterone administration may increase the T/E ratio. In the last years, the determination of the carbon isotope ratio has proven to be the most promising method to help discriminate between naturally elevated T/E ratios and those reflecting T use. In this paper, an excretion study following oral administration of 40 mg testosterone undecanoate initially and 13 h later is presented. Four testosterone metabolites (androsterone, etiocholanolone, 5 alpha-androstanediol, and 5 beta-androstanediol) together with an endogenous reference (5 beta-pregnanediol) were extracted from the urines and the delta(13)C/(12)C ratio of each compound was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry. The results show similar maximum delta(13)C-value variations (parts per thousand difference of delta(13)C/(12)C ratio from the isotope ratio standard) for the T metabolites and concomitant changes of the T/E ratios after administration of the first and the second dose of T. Whereas the T/E ratios as well as the androsterone, etiocholanolone and 5 alpha-androstanediol delta(13)C-values returned to the baseline 15 h after the second T administration, a decrease of the 5 beta-androstanediol delta-values could be detected for over 40 h. This suggests that measurements of 5 beta-androstanediol delta-values allow the detection of a testosterone ingestion over a longer post-administration period than other T metabolites delta(13)C-values or than the usual T/E ratio approach.