945 resultados para Combinatorial optimization algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afin d'enrichir les données de corpus bilingues parallèles, il peut être judicieux de travailler avec des corpus dits comparables. En effet dans ce type de corpus, même si les documents dans la langue cible ne sont pas l'exacte traduction de ceux dans la langue source, on peut y retrouver des mots ou des phrases en relation de traduction. L'encyclopédie libre Wikipédia constitue un corpus comparable multilingue de plusieurs millions de documents. Notre travail consiste à trouver une méthode générale et endogène permettant d'extraire un maximum de phrases parallèles. Nous travaillons avec le couple de langues français-anglais mais notre méthode, qui n'utilise aucune ressource bilingue extérieure, peut s'appliquer à tout autre couple de langues. Elle se décompose en deux étapes. La première consiste à détecter les paires d’articles qui ont le plus de chance de contenir des traductions. Nous utilisons pour cela un réseau de neurones entraîné sur un petit ensemble de données constitué d'articles alignés au niveau des phrases. La deuxième étape effectue la sélection des paires de phrases grâce à un autre réseau de neurones dont les sorties sont alors réinterprétées par un algorithme d'optimisation combinatoire et une heuristique d'extension. L'ajout des quelques 560~000 paires de phrases extraites de Wikipédia au corpus d'entraînement d'un système de traduction automatique statistique de référence permet d'améliorer la qualité des traductions produites. Nous mettons les données alignées et le corpus extrait à la disposition de la communauté scientifique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an optimization approach for the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The proposed approach is based on a genetic algorithm technique. The scheduling rules such as SPT and MWKR are integrated into the process of genetic evolution. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities and delay times of the operations are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To connect different electrical, network and data devices with the minimum cost and shortest path, is a complex job. In huge buildings, where the devices are placed at different locations on different floors and only some specific routes are available to pass the cables and buses, the shortest path search becomes more complex. The aim of this thesis project is, to develop an application which indentifies the best path to connect all objects or devices by following the specific routes.To address the above issue we adopted three algorithms Greedy Algorithm, Simulated Annealing and Exhaustive search and analyzed their results. The given problem is similar to Travelling Salesman Problem. Exhaustive search is a best algorithm to solve this problem as it checks each and every possibility and give the accurate result but it is an impractical solution because of huge time consumption. If no. of objects increased from 12 it takes hours to search the shortest path. Simulated annealing is emerged with some promising results with lower time cost. As of probabilistic nature, Simulated annealing could be non optimal but it gives a near optimal solution in a reasonable duration. Greedy algorithm is not a good choice for this problem. So, simulated annealing is proved best algorithm for this problem. The project has been implemented in C-language which takes input and store output in an Excel Workbook

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems, are one of the most important types of problems in operational research. Heuristic and metaheuristics algorithms are widely applied to find a good solution. However, a common problem is that these algorithms do not guarantee that the solution will coincide with the optimum and, hence, many solutions to real world OR-problems are afflicted with an uncertainty about the quality of the solution. The main aim of this thesis is to investigate the usability of statistical bounds to evaluate the quality of heuristic solutions applied to large combinatorial problems. The contributions of this thesis are both methodological and empirical. From a methodological point of view, the usefulness of statistical bounds on p-median problems is thoroughly investigated. The statistical bounds have good performance in providing informative quality assessment under appropriate parameter settings. Also, they outperform the commonly used Lagrangian bounds. It is demonstrated that the statistical bounds are shown to be comparable with the deterministic bounds in quadratic assignment problems. As to empirical research, environment pollution has become a worldwide problem, and transportation can cause a great amount of pollution. A new method for calculating and comparing the CO2-emissions of online and brick-and-mortar retailing is proposed. It leads to the conclusion that online retailing has significantly lesser CO2-emissions. Another problem is that the Swedish regional division is under revision and the border effect to public service accessibility is concerned of both residents and politicians. After analysis, it is shown that borders hinder the optimal location of public services and consequently the highest achievable economic and social utility may not be attained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a new method for solving large scale p-median problem instances based on real data. We compare different approaches in terms of runtime, memory footprint and quality of solutions obtained. In order to test the different methods on real data, we introduce a new benchmark for the p-median problem based on real Swedish data. Because of the size of the problem addressed, up to 1938 candidate nodes, a number of algorithms, both exact and heuristic, are considered. We also propose an improved hybrid version of a genetic algorithm called impGA. Experiments show that impGA behaves as well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the minimization of tool switches problem we seek a sequence to process a set of jobs so that the number of tool switches required is minimized. In this work different variations of a heuristic based on partial ordered job sequences are implemented and evaluated. All variations adopt a depth first strategy of the enumeration tree. The computational test results indicate that good results can be obtained by a variation which keeps the best three branches at each node of the enumeration tree, and randomly choose, among all active nodes, the next node to branch when backtracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.