919 resultados para Color-Digital imaging
Resumo:
In this paper we present the methodological procedures involved in the digital imaging in mesoscale of a block of travertines rock of quaternary age, originating from the city of Acquasanta, located in the Apennines, Italy. This rocky block, called T-Block, was stored in the courtyard of the Laboratório Experimental Petróleo "Kelsen Valente" (LabPetro), of Universidade Estadual de Campinas (UNICAMP), so that from it were performed Scientific studies, mainly for research groups universities and research centers working in brazilian areas of reservoir characterization and 3D digital imaging. The purpose of this work is the development of a Model Solid Digital, from the use of non-invasive techniques of digital 3D imaging of internal and external surfaces of the T-Block. For the imaging of the external surfaces technology has been used LIDAR (Light Detection and Range) and the imaging surface Interior was done using Ground Penetrating Radar (GPR), moreover, profiles were obtained with a Gamma Ray Gamae-spectômetro laptop. The goal of 3D digital imaging involved the identification and parameterization of surface geological and sedimentary facies that could represent heterogeneities depositional mesoscale, based on study of a block rocky with dimensions of approximately 1.60 m x 1.60 m x 2.70 m. The data acquired by means of terrestrial laser scanner made available georeferenced spatial information of the surface of the block (X, Y, Z), and varying the intensity values of the return laser beam and high resolution RGB data (3 mm x 3 mm), total points acquired 28,505,106. This information was used as an aid in the interpretation of radargrams and are ready to be displayed in rooms virtual reality. With the GPR was obtained 15 profiles of 2.3 m and 2 3D grids, each with 24 sections horizontal of 1.3 and 14 m vertical sections of 2.3 m, both the Antenna 900 MHz to about 2600 MHz antenna. Finally, the use of GPR associated with Laser Scanner enabled the identification and 3D mapping of 3 different radarfácies which were correlated with three sedimentary facies as had been defined at the outset. The 6 profiles showed gamma a low amplitude variation in the values of radioactivity. This is likely due to the fact of the sedimentary layers profiled have the same mineralogical composition, being composed by carbonate sediments, with no clay in siliciclastic pellitic layers or other mineral carrier elements radioactive
Resumo:
Objective: To evaluate the influence of alternative erasing times of DenOptix (R) (Dentsply/Gendex, Chicargo, IL) digital plates oil subjective image quality and the probability of double exposure image not Occurring.Methods: Human teeth were X-rayed with phosphor plates using tell different erasing times. Two observers evaluated the images for subjective Image quality (sharpness, brightness, contrast, enamel definition, dentin definition and dentin-enamal Junction definition) and for the presence or absence of double exposure image. Spearman's correlation analysis and ANOVA was performed to verify the existence ora linear association between the subjective image quality parameters and the alternative erasing times. A contingency table was constructed to evaluate the agreement among the observers, and a binominal logistic regression was performed to verify the correlation between the erasing time and the probability of double exposure image not occurring.Results: All 6 parameters or image quality were rated high by the examiners for the erasing times between 25 s and 130 s. The same erasing time range, from 25 to 130 s, was considered a safe erasing time interval, with no probability of a double exposure image Occurring.Conclusions: The alternative erasing times from 25 s to 130 s showed high quality and no probability of double image Occurrence. Thus, it is possible to reduce the operating time or the DenOptix (R) digital system Without jeopardizing the diagnostic task.Dentomaxillofacial Radiology (2010) 39, 23-27. doi: 10.1259/dmfr/49065239.
Resumo:
Digital technology has promoted a great popularization of photographic registration in several medical areas. Because of its visual nature, dermatology has incorporated the benefits of this tool in clinical practice and research. This article aims to offer guidance to the dermatologist who is unfamiliar with this technology, providing basic understanding for the best use of digital photography equipment. ©2006 by Anais Brasileiros de Dermatologia.
Resumo:
Purpose: To determine palpebral dimensions and development in Brazilian children using digital images. Methods: An observational study was performed measuring eyelid angles, palpebral fissure area and interpupillary distance in 220 children aged from 4 to 72 months. Digital images were obtained with a Sony Lithium movie camera (Sony DCR-TRV110, Brazil) in frontal view from awake children in primary ocular position; the object of observation was located at pupil height. The images were saved to tape, transferred to a Macintosh G4 (Apple Computer Inc., USA) computer and processed using NIH 1.58 software (NTIS, 5285 Port Royal Rd., Springfield, VA 22161, USA). Data were submitted to statistical analysis. Results: All parameters studied increased with age. The outer palpebral angle was greater than the inner, and palpebral fissure and angles showed greater changes between 4 and 5 months old and at around 24 to 36 months. Conclusion: There are significant variations in palpebral dimensions in children under 72 months old, especially around 24 to 36 months. Copyright © 2006 Informa Healthcare.
Resumo:
The advances in digital imaging technology in dentistry have provided an alternative to film-based radiography and have given new options to detect periodontal bone loss. The purpose of this study was to compare inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements. Thirty-five film-based periapical radiographs of patients suffering from moderate to advanced untreated periodontal bone loss associated to lower premolar and molars was selected from the department files, with 40 bone loss areas. The film-based radiographs were digitized with a flatbed scanner with a transparency and radiograph adapter used for transilluminating the radiograph imaging. Digitization was performed at 600 dpi and in gray scale. The images were digitized using Image Tool software by applying image inversion, that is, transformation of radiopaque structures into radiolucent structures and vice-versa. The digital data were saved as JPEG files. The images were displayed on a 15-inch and 24-bit video monitor under reduced room lighting. One calibrated examiner performed all radiographic measurements, three times, from the cementoenamel junction to the most apical extension of the bone loss, in both types of image (inverted and unprocessed). Brightness and contrast were adjusted according to the examiner's individual demand. Intraclass correlation coefficient was used to compare the measurements from both types of images. The means of radiographic measurements, in mm, for inverted and unprocessed digitized imaging were 6.4485 and 6.3790, respectively. The intraclass correlation coefficient was significant (0.99) The inverted and unprocessed digitized radiographic images were reliable and there was no difference in the diagnostic accuracy between these images regarding periodontal bone loss measurements.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in gray shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the gray shades making up the image, and thus calculate the appropriateness of the pixels in relation to an homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. © 2007 IEEE.
Resumo:
In cases of identification of bones, skeletal segments or isolated bones, searching for biotypologic diagnostic data to estimate an individual's age enables comparing these data with those of missing individuals. Enamel, dentin and pulp undergo remarkable changes during an individual's life. The enamel becomes more mineralized, smoother and thinner, and deteriorates because of physiological and pathological factors. Dental pulp decreases in volume due to the deposition of secondary dentin; thus, the dentin becomes thicker with time. In natural teeth, the fluorescence phenomenon occurs in dentin and enamel and changes in those tissues may alter the expression of the natural tooth color. The aim of this study was to assess the correlation between age and teeth fluorescence for individuals from different age groups. The sample consisted of 66 randomly selected Brazilians of both genders aged 7-63 years old. They were divided into 6 groups: Group 1 - aged 7-12 years, Group 2 - aged 13-20 years, Group 3 - aged 21-30 years, Group 4 - aged 31-40 years, Group 5 - aged 41-50 years and Group 6 - aged between 51 and 63 years. Upper right or left central incisors were used for the study. Restored and aesthetic rehabilitated teeth were excluded from the sample. The measurement of tooth fluorescence was carried out via computer analysis of digital images using the software ScanWhite DMC/Darwin Systems - Brazil. It was observed that dental fluorescence decreases when comparing the age groups 21-30, 31-40, 41-50 and 51-63 years. The results also showed that there is a statistically significant difference between the groups 41-50 years and 21-30 years (p=. 0.005) and also among the group 51-63 years and all other groups (p< 0.005). It can be concluded that dental fluorescence is correlated with age and has a similar and stable behavior from 7 to 20 years of age. It reaches its maximum expected value at the age of 26.5 years and thereafter decreases. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Although the diagnosis of Graves' orbitopathy is primarily made clinically based on laboratory tests indicative of thyroid dysfunction and autoimmunity, imaging studies, such as computed tomography, magnetic resonance imaging, ultrasound and color Doppler imaging, play an important role both in the diagnosis and follow-up after clinical or surgical treatment of the disease. Imaging studies can be used to evaluate morphological abnormalities of the orbital structures during the diagnostic workup when a differential diagnosis versus other orbital diseases is needed. Imaging may also be useful to distinguish the inflammatory early stage from the inactive stage of the disease. Finally, imaging studies can be of great help in identifying patients prone to develop dysthyroid optic neuropathy and therefore enabling the timely diagnosis and treatment of the condition, avoiding permanent visual loss. In this paper, we review the imaging modalities that aid in the diagnosis and management of Graves' orbitopathy, with special emphasis on the diagnosis of optic nerve dysfunction in this condition.
Resumo:
BACKGROUND: Digital imaging methods are a centrepiece for diagnosis and management of macular disease. A recently developed imaging device is composed of simultaneous confocal scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). By means of clinical samples the benefit of this technique concerning diagnostic and therapeutic follow-up will be assessed. METHODS: The combined OCT-SLO-System (Ophthalmic Technologies Inc., Toronto, Canada) allows for confocal en-face fundus imaging and high resolution OCT scanning at the same time. OCT images are obtained from transversal line scans. One light source and the identical scanning rate yield a pixel-to-pixel correspondence of images. Three-dimensional thickness maps are derived from C-scan stacking. RESULTS: We followed-up patients with cystoid macular edema, pigment epithelium detachment, macular hole, venous branch occlusion, and vitreoretinal tractions during their course of therapy. The new imaging method illustrates the reduction of cystoid volume, e.g. after intravitreal injections of either angiostatic drugs or steroids. C-scans are used for appreciation of lesion diameters, visualisation of pathologies involving the vitreoretinal interface, and quantification of retinal thickness change. CONCLUSION: The combined OCT-SLO system creates both topographic and tomographic images of the retina. New therapeutic options can be followed-up closely by observing changes in lesion thickness and cyst volumes. For clinical use further studies are needed.
Resumo:
We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.
Resumo:
The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.
Resumo:
This review will discuss the use of manual grading scales, digital photography, and automated image analysis in the quantification of fundus changes caused by age-related macular disease. Digital imaging permits processing of images for enhancement, comparison, and feature quantification, and these techniques have been investigated for automated drusen analysis. The accuracy of automated analysis systems has been enhanced by the incorporation of interactive elements, such that the user is able to adjust the sensitivity of the system, or manually add and remove pixels. These methods capitalize on both computer and human image feature recognition and the advantage of computer-based methodologies for quantification. The histogram-based adaptive local thresholding system is able to extract useful information from the image without being affected by the presence of other structures. More recent developments involve compensation for fundus background reflectance, which has most recently been combined with the Otsu method of global thresholding. This method is reported to provide results comparable with manual stereo viewing. Developments in this area are likely to encourage wider use of automated techniques. This will make the grading of photographs easier and cheaper for clinicians and researchers. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Aim: To examine the use of image analysis to quantify changes in ocular physiology. Method: A purpose designed computer program was written to objectively quantify bulbar hyperaemia, tarsal redness, corneal staining and tarsal staining. Thresholding, colour extraction and edge detection paradigms were investigated. The repeatability (stability) of each technique to changes in image luminance was assessed. A clinical pictorial grading scale was analysed to examine the repeatability and validity of the chosen image analysis technique. Results: Edge detection using a 3 × 3 kernel was found to be the most stable to changes in image luminance (2.6% over a +60 to -90% luminance range) and correlated well with the CCLRU scale images of bulbar hyperaemia (r = 0.96), corneal staining (r = 0.85) and the staining of palpebral roughness (r = 0.96). Extraction of the red colour plane demonstrated the best correlation-sensitivity combination for palpebral hyperaemia (r = 0.96). Repeatability variability was <0.5%. Conclusions: Digital imaging, in conjunction with computerised image analysis, allows objective, clinically valid and repeatable quantification of ocular features. It offers the possibility of improved diagnosis and monitoring of changes in ocular physiology in clinical practice. © 2003 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.