932 resultados para Colony Count, Microbial
Resumo:
The aim of this study was to evaluate the antimicrobial activity of a new root canal sealer containing calcium hydroxide (Acroseal) and the root canal sealer based on MTA (Endo CPM Sealer), in comparison with traditional sealers (Sealapex, Sealer 26 and Intrafill) and white MTA-Angelus, against five different microorganism strains. The materials and their components were evaluated after manipulation, employing the agar diffusion method. A base layer was made using Müller-Hinton agar (MH) and wells were made by removing agar. The materials were placed into the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. The results showed that Sealapex and its base paste, Sealer 26 and its powder, Endo CPM Sealer and its powder, white MTA and its powder all presented antimicrobial activity against all strains. Intrafill and its liquid presented antimicrobial activity against all strains except P. aeruginosa and Acroseal was effective only against M. luteus and S. aureus.
Resumo:
The purpose of this study was to evaluate the effect of 5% sodium bicarbonate on the adherence of Candida albicans to thermally activated acrylic resin. Fifty 4 mm specimens of acrylic resin were obtained using a metallic matrix. The specimens received chemical polishing, were sterilized and then immersed in Sabouraud broth, inoculated with Candida albicans standardized suspension. After 24 hours of incubation at 37°C, the specimens were divided into four groups according to the substance used for disinfection (5% sodium bicarbonate, 0.12% digluconate chlorhexidine, vinegar and Corega Tabs). A control group was included, in which distilled water was used. The adhered microorganisms were dispersed, diluted and plated onto culture media to determine the number of colony-forming units (cfu/mL). The results were analyzed through the Mann-Whitney statistical test at the 5% level of significance. Only 0.12% digluconate chlorhexidine and 5% sodium bicarbonate presented a statistically significant difference (p = 0.0010 and p = 0.0156, respectively) compared to the control group, decreasing the number of cfu/mL. However, when the different disinfecting solutions were compared with each other, only 0.12% digluconate chlorhexidine presented a statistically significant difference in the reduction of cfu/mL. It was concluded that although 0.12% digluconate chlorhexidine was more effective in the reduction of Candida albicans adherence values to thermally activated acrylic resin, 5% sodium bicarbonate also proved to be a viable alternative.
Resumo:
The aim of this study was to evaluate the influence of chlorhexidine gluconate, sodium fluoride and sodium iodine on mutans streptococci counts in saliva of irradiated patients. Forty-five patients were separated into three experimental groups and received chlorhexidine (0.12%), sodium fluoride (0.5%) or sodium iodine (2%), which were used daily during radiotherapy and for 6 months after the conclusion of the treatment. In addition, a fourth group, composed by 15 additional oncologic patients, who did not receive the mouthwash or initial dental treatment, constituted the control group. Clinical evaluations were performed in the first visit to dental clinic, after initial dental treatment, immediately before radiotherapy, after radiotherapy and 30, 60, 90 days and 6 months after the conclusion of radiotherapy. After clinical examinations, samples of saliva were inoculated on SB20 selective agar and incubated under anaerobiosis, at 37oC for 48 h. Total mutans streptococci counts were also evaluated by using real-time PCR, through TaqMan system, with specific primers and probes for S. mutans and S. sobrinus. All preventive protocols were able to reduce significantly mutans streptococci counts, but chlorhexidine gluconate was the most effective, and induced a significant amelioration of radiotherapy side effects, such as mucositis and candidosis. These results highlights the importance of the initial dental treatment for patients who will be subjected to radiotherapy for head and neck cancer treatment.
Resumo:
The aim of this study was to evaluate alternative methods for the disinfection of toothbrushes considering that most of the previously proposed methods are expensive and cannot be easily implemented. Two-hundred toothbrushes with standardized dimensions and bristles were included in the study. The toothbrushes were divided into 20 experimental groups (n=10), according to microorganism considered and chemical agent used. The toothbrushes were contaminated in vitro by standardized suspensions of Streptococcus mutans, Streptococcus pyogenes, Staphylococcus aureus or Candida albicans. The following disinfectants were tested: 0.12% chlorhexidine digluconate, 50% white vinegar, a triclosan-containing dentifrice solution, and a perborate-based tablet solution. The disinfection method was immersion in the disinfectant for 10min. After the disinfection procedure, the number of remaining microbial cells was evaluated. The values of cfu/toothbrush of each group of microorganism after disinfection were compared by Kruskal-Wallis ANOVA and Dunn's test for multiple comparisons (5%). The chlorhexidine digluconate solution was the most effective disinfectant. The triclosan-based dentifrice solution promoted a significant reduction of all microorganisms' counts in relation to the control group. As to the disinfection with 50% vinegar, a significant reduction was observed for all the microorganisms, except for C. albicans. The sodium perborate solution was the less effective against the tested microorganisms. Solutions based on triclosan-containing dentifrice may be considered effective, nontoxic, cost-effective, and an easily applicable alternative for the disinfection of toothbrushes. The vinegar solution reduced the presence of S. aureus, S. mutans and S. pyogenes on toothbrushes.
Resumo:
Patients with motor deficiency have variable difficulties with mechanical plaque control, and as a consequence, the incidence of dental caries and periodontal disease can be higher in these patients. The objective of this study was to evaluate the clinical and microbiological efficacy of a toothpaste containing 1% chlorhexidine, which was used by patients with motor deficiency for 14 days. The reduction in plaque and gingival index and the impact on salivary microorganisms was evaluated. We conclude that the motivation of caregivers to carry out oral hygiene for patients with mental and motor deficiency is of great importance and is effective in reducing the formation of plaque as long as it is continuously reinforced. The use of chlorhexidine- containing toothpaste significantly reduced the plaque index and microorganism count between days 0 and 14. A reduction was also observed in the group that used a dentifrice without the chlorhexidine, but this difference was not significant. © 2010 Special Care Dentistry Association and Wiley Periodicals, Inc.
Resumo:
Objectives: Ozone has been used as an alternative method for the decontamination of water, food, equipment and instruments. The objective of this study was to evaluate the antimicrobial effects of ozonated water on the sanitization of dental instruments that were contaminated by Escherichia coli, Staphylococcus aureus, Candida albicans and the spores of Bacillus atrophaeus. Methods: A total of one hundred and twenty standardized samples of diamond dental burs were experimentally contaminated with E. coli (ATCC 25922), S. aureus (ATCC 6538) and C. albicans (ATCC 18804) and the spores of B. atrophaeus (ATCC 6633) for 30min. After the contamination, the samples were exposed to ozonated water (10mg/L O3) for 10 or 30min. The control group was composed of samples that were exposed to distilled water for 30min. After the exposure to the ozonated water, 0.1mL aliquots were seeded onto BHI agar to count the colony-forming units per milliliter (CFU/mL) of E. coli, S. aureus, and B. atrophaeus. Sabouraud dextrose agar was used to count the CFU/mL of C. albicans. The results were subjected to an analysis of variance and the Tukey test. Results: For all of the microorganisms studied, the ozonated water reduced the number of CFU/mL after 10 and 30. min of sanitization, and this microbial reduction was dependent on the duration of the exposure to the ozonated water. E. coli exhibited the greatest reduction in CFU/mL (2.72-3.78. log) followed by S. aureus (2.14-3.19. log), C. albicans (1.44-2.14. log) and the spores of B. atrophaeus (1.01-1.98. log). Conclusion: The ozonated water was effective in reducing the CFU of E. coli, S. aureus, C. albicans and B. atrophaeus spores, suggesting that ozonated water can be used for the sanitization of dental instruments. © 2012 King Saud Bin Abdulaziz University for Health Sciences.
Resumo:
Objectives: To compare the oral prevalence and antimicrobial susceptibility of Candida spp., staphylococci, enterobacteriaceae, and pseudomonas spp.from ankylosing spondylitis (AS) patients receiving conventional and anti-TNF-α therapy. Methods: The study included 70 AS patients, diagnosed according to the modified New York criteria (1984). The volunteers were divided into 2 groups: a biological group (AS BioG) (n=35) (on anti-TNF-α therapy) and a conventional group (AS ConvG) (n=35). The control group (ContG) (n=70) was made up of healthy individuals matched for age, gender, and oral conditions. After clinical examination, oral rinse samples were collected and plated in specific culture media. The number of colony-forming units per milliliter (cfu/ml) was obtained, and isolates were identified using the API system. Antimicrobial susceptibility tests were performed according to the NCCLS guidelines. Prevalence and counts of microorganisms were statistically compared between the 3 groups, using the Mann-Whitney and Chi-square tests. Significance level was set at 5%. Results: In both the AS BioG and the AS ConvG, staphylococci counts were higher than that in the ContG (p<0.0001). Candida albicans and staphylococcus epidermidis were the most commonly found species in all the groups. Serratia marcescens and klebsiella oxytoca were more prevalent in the AS BioG and the AS ConvG, respectively. Two Candida isolates (2.8%) from the AS BioG and 5 (10.8%) from the AS ConvG were resistant to amphotericin B and 5-fluorocytosine. A low percentage of staphylococci isolates was resistant to amoxicillin, ciprofloxacin, and doxycycline. Conclusion: Higher counts of staphylococci were observed in both AS groups, regardless of the current therapy, age, sex, and oral conditions. Anti-TNF-α therapy could not be correlated with increased counts of microorganisms. © Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2012.
Resumo:
Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).
Resumo:
Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Poor hospital indoor air quality (IAQ) may lead to hospital-acquired infections, sick hospital syndrome and various occupational hazards. Air-control measures are crucial for reducing dissemination of airborne biological particles in hospitals. The objective of this study was to perform a survey of bioaerosol quality in different sites in a Portuguese Hospital, namely the operating theater (OT), the emergency service (ES) and the surgical ward (SW). Aerobic mesophilic bacterial counts (BCs) and fungal load (FL) were assessed by impaction directly onto tryptic soy agar and malt extract agar supplemented with antibiotic chloramphenicol (0.05%) plates, respectively using a MAS-100 air sampler. The ES revealed the highest airborne microbial concentrations (BC range 240-736 CFU/m(3) CFU/m(3); FL range 27-933 CFU/m(3)), exceeding, at several sampling sites, conformity criteria defined in national legislation [6]. Bacterial concentrations in the SW (BC range 99-495 CFU/m(3)) and the OT (BC range 12-170 CFU/m(3)) were under recommended criteria. While fungal levels were below 1 CFU/m(3) in the OT, in the SW (range 1-32 CFU/m(3)), there existed a site with fungal indoor concentrations higher than those detected outdoors. Airborne Gram-positive cocci were the most frequent phenotype (88%) detected from the measured bacterial population in all indoor environments. Staphylococcus (51%) and Micrococcus (37%) were dominant among the bacterial genera identified in the present study. Concerning indoor fungal characterization, the prevalent genera were Penicillium (41%) and Aspergillus (24%). Regular monitoring is essential for assessing air control efficiency and for detecting irregular introduction of airborne particles via clothing of visitors and medical staff or carriage by personal and medical materials. Furthermore, microbiological survey data should be used to clearly define specific air quality guidelines for controlled environments in hospital settings.
Resumo:
Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical anti-microbial agents has helped improve the survival in these patients. There are a number of anti-microbials available, one of which, Silvazine(TM) (1% silver sulphadiazine (SSD) and 0.2% chlorhexidine digluconate), is used only in Australasia. No study, in vitro or clinical, had compared Silvazine(TM) with the new dressing Acticoat(TM). This study compared the anti-microbial activity of Silvazine(TM), Acticoa(TM) and 1% silver sulphadiazine (Flamazine(TM)) against eight common burn wound pathogens. Methods: Each organism was prepared as a suspension. A 10 mul inoculum of the chosen bacterial isolate (representing approximately between 104 and 105 total bacteria) was added to each of four vials, followed by samples of each dressing and a control. The broths were then incubated and 10 mul loops removed at specified intervals and transferred onto Horse Blood Agar. These plates were then incubated for 18 hours and a colony count was performed. Results: The data demonstrates that the combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) results in the most effective killing of all bacteria. SSD and Acticoat(TM) had similar efficacies against a number of isolates, but Acticoat(TM) seemed only bacteriostatic against E. faecalis and methicillin-resistant Staphylococcus aureus. Viable quantities of Enterobacter cloacae and Proteus mirabilis rei named at 24 h. Conclusion: The combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) is a more effective anti-microbial against a number of burn wound pathogens in this in vitro study. A clinical study of its in vivo anti-microbial efficacy is required. (C) 2003 Elsevier Ltd and ISBI. All rights reserved.
Resumo:
Although the antimicrobial activity of atmospheric pressure non-thermal plasmas, including its capacity to eradicate microbial biofilms, has been gaining an ever increasing interest for different medical applications, its potential utilisation in the control of biofouling and biodeterioration has, to date, received no attention. In this study, the ability of atmospheric pressure plasma to eradicate biofilms of four biofouling bacterial species, frequently encountered in marine environments, was investigated. Biofilms were grown on both polystyrene and stainless steel surfaces before being exposed to the plasma source. Viability and biomass of biofilms were evaluated using colony count method and differential Live/Dead fluorescence staining followed by confocal laser scanning microscopy. Rapid and complete eradication of all biofilms under study was achieved after plasma exposures ranging from 60 to 120 s. Confocal microscopy examination showed that plasma treatment has mediated not only cell killing but also varying degrees of physical removal of biofilms. Further investigation and tailored development of atmospheric pressure non-thermal plasma sources for this particular application could provide an additional powerful and effective weapon in the current anti-biofouling armamentarium.
Resumo:
Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed "photodynamic antimicrobial chemotherapy" (PACT). In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs) are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez(®) AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1-2.5 mg/mL) and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96%, were achieved for S. aureus and >99% for E. coli and C. albicans with the combination of PACT and methylene blue concentrations between 0.1 and 2.5 mg/mL. A reduction in the colony count was also observed when incorporating the photosensitiser without irradiation, this reduction was more notable in S. aureus and E. coli strains than in C. albicans.