998 resultados para Collective Land Titling
Resumo:
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Aeromonas genus is considered an emerging pathogen and its presence in drinking water supplies is a reason to public health concern. This study investigated the occurrence of Aeromonas in samples from collective reservoirs and wells used as drinking water sources in a peri-urban area. A total of 35 water samples were collected from collective reservoirs and 32 from wells bimonthly, from September 2007 to September 2008. Aeromonas spp determination was carried out using a Multiple-Tube Technique. Samples were inoculated into alkaline peptone water and the superficial film formed was transferred to blood agar plates amended with ampicillin. Typical Aeromonas colonies were submitted to a biochemical screening and then to biochemical tests for species differentiation. Aeromonas was detected in 13 (19%) of the 69 samples examined (6 from collective reservoirs and 7 from wells). Concentrations of Aeromonas in collective reservoirs ranged from <0.3 to 1.2 x10²MPN/100mL and, in wells, from <0.3 to 2.4 x10²MPN/100mL. The most frequent specie in the collective reservoir samples was Aeromonas spp (68%), followed by A. encheleia (14%) and A. allosaccharophila (8%) and A. hydrophila (8%). Aeromonas spp (87%) was the most frequent specie isolated from well samples, followed by A. allosacchariphila (8%), A. encheleia (2%) and A. jandaei (5%). These data show the presence and diversity of Aeromonas genus in the samples analyzed and highlight that its presence in drinking water poses a significant public health concern.
Resumo:
Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.
Resumo:
Background: In Brazil, 99% of malaria cases are concentrated in the Amazon, and malaria's spatial distribution is commonly associated with socio-environmental conditions on a fine landscape scale. In this study, the spatial patterns of malaria and its determinants in a rural settlement of the Brazilian agricultural reform programme called ""Vale do Amanhecer"" in the northern Mato Grosso state were analysed. Methods: In a fine-scaled, exploratory ecological study, geocoded notification forms corresponding to malaria cases from 2005 were compared with spectral indices, such as the Normalized Difference Vegetation Index (NDVI) and the third component of the Tasseled Cap Transformation (TC_3) and thematic layers, derived from the visual interpretation of multispectral TM-Landsat 5 imagery and the application of GIS distance operators. Results: Of a total of 336 malaria cases, 102 (30.36%) were caused by Plasmodium falciparum and 174 (51.79%) by Plasmodium vivax. Of all the cases, 37.6% (133 cases) were from residents of a unique road. In total, 276 cases were reported for the southern part of the settlement, where the population density is higher, with notification rates higher than 10 cases per household. The local landscape mostly consists of open areas (38.79 km(2)). Training forest occupied 27.34 km(2) and midsize vegetation 7.01 km(2). Most domiciles with more than five notified malaria cases were located near areas with high NDVI values. Most domiciles (41.78%) and malaria cases (44.94%) were concentrated in areas with intermediate values of the TC_3, a spectral index representing surface and vegetation humidity. Conclusions: Environmental factors and their alteration are associated with the occurrence and spatial distribution of malaria cases in rural settlements.
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
We study collective scattering with Bose-Einstein condensates interacting with a high-finesse ring cavity. The condensate scatters the light of a transverse pump beam superradiantly into modes which, in contrast to previous experiments, are not determined by the geometrical shape of the condensate, but specified by a resonant cavity mode. Moreover, since the recoil-shifted frequency of the scattered light depends on the initial momentum of the scattered fraction of the condensate, we show that it is possible to employ the good resolution of the cavity as a filter selecting particular quantized momentum states.
Resumo:
In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.
Resumo:
The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. The wavelet-smoothed green-leaf phenology was analyzed to detect cropland areas and their cropping patterns. The authors document cropland extensification and double-cropping intensification validated with field data with 85% accuracy for detecting croplands and 64% and 89% accuracy for detecting single-and double-cropping patterns, respectively. The results show that croplands more than doubled from 2001 to 2006 to cover about 100 000 km(2) and that new double-cropping intensification occurred on over 20% of croplands. Variations are seen in the annual rates of extensification and double-cropping intensification. Greenhouse gas emissions are estimated for the period 2001-06 due to conversion of natural vegetation and pastures to row-crop agriculture in Mato Grosso averaged 179 Tg CO(2)-e yr(-1),over half the typical fossil fuel emissions for the country in recent years.
Resumo:
Biogeochemistry is hosting this special thematic issue devoted to studies of land-water interactions, as part of the Large-scale Biosphere-Atmosphere Experiment in Amaznia (LBA). This compilation of papers covers a broad range of topics with a common theme of coupling land and water processes, across pristine and impacted systems. Findings highlighted that hydrologic flowpaths are clearly important across basin size and structure in determining how water and solutes reach streams. Land-use changes have pronounced impacts on flowpaths, and subsequently, on stream chemistry, from small streams to large rivers. Carbon is produced and transformed across a broad array of fluvial environments and wetlands. Surface waters are not only driven by, but provide feedback to, the atmosphere.
Resumo:
Soil compaction that follows the clearing of tropical forest for cattle pasture is associated with lower soil hydraulic conductivity and increased frequency and volume of overland flow. We investigated the frequency of perched water tables, overland flow and stormflow in an Amazon forest and in an adjacent 25-year-old pasture cleared from the same forest. We compared the results with the frequencies of these phenomena estimated from comparisons of rainfall intensity and soil hydraulic conductivity. The frequency of perched water tables based on rainfall intensity and soil hydraulic conductivity was expected to double in pasture compared with forest. This corresponded closely with an approximate doubling of the frequency of stormflow and overland flow in pasture. In contrast, the stormflow volume in pasture increased 17-fold. This disproportional increase of stormflow resulted from overland flow generation over large areas of pasture, while overland flow generation in the forest was spatially limited and was observed only very near the stream channel. In both catchments, stormflow was generated by saturation excess because of perched water tables and near-surface groundwater levels. Stormflow was occasionally generated in the forest by rapid return flow from macropores, while slow return flow from a continuous perched water table was more common in the pasture. These results suggest that deforestation for pasture alters fundamental mechanisms of stormflow generation and may increase runoff volumes over wide regions of Amazonia. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.
Resumo:
The replacement of undisturbed tropical forest with cattle pasture has the potential to greatly modify the hydrology of small watersheds and the fluxes of solutes. We examined the fluxes of water, Cl(-), NO(3)(-)-N: SO(4)(2--)-S, NH(4)(+)-N, Na(+), K(+), Mg(2+) and Ca(2+) in different flow paths in similar to 1 ha catchments of undisturbed open tropical rainforest and a 20 year-old pasture established from forest in the southwestern Brazilian Amazon state of Rondonia. Storm flow discharge was 18% of incident rainfall in pasture, but only 1% in forest. Quickflow predominated over baseflow in both catchments and in both wet and dry seasons. In the pasture, groundwater and quickflow were important flow paths for the export of all solutes. In the forest, quickflow was important for NO(3)(-)-N export, but all other solutes were exported primarily by groundwater outflow. Both catchments were sinks for SO(4)(2-)-S and Ca(2+), and sources of Na(+). The pasture catchment also lost K(+) and Mg(2+) because of higher overland flow frequency and volume and to cattle excrement. These results show that forest clearing dramatically influences small watershed hydrology by increasing quickflow and water export to streams. They also indicate that tropical forest watersheds are highly conservative for most solutes but that pastures continue to lose important cations even decades after deforestation and pasture establishment. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log(10)discharge-log(10)Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (< 1 to > 10(6) ha) and discharge (10(-5.7)-10(3.2) m(3) s(-1)). Linear regressions of log(10)Ca versus log(10)discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.
Resumo:
The Cerrado is the second largest Brazilian biome and contains the headwaters of three major hydrological basins in Brazil. In spite of the biological and ecological relevance of this biome, there is little information about how land use changes affect the chemistry of low-order streams in the Cerrado. To evaluate these effects streams that drain areas under natural, rural, and urban land cover were sampled near Brasilia, Brazil. Water samples were collected between September 2004 and December 2006. Chemical concentrations generally followed the pattern of Urban > Rural > Natural. Median conductivity of stream water of 21.6 (interquartile: 22.7) mu S/cm in urban streams was three and five-fold greater relative to rural and natural areas, respectively. In the wet season, despite of increasing discharge, concentration of many solutes were higher, particularly in rural and natural streams. Streams also presented higher total dissolved N (TDN) loads from natural to rural and urban although DIN:DON ratios did not differ significantly. In natural and urban streams TDN was 80 and 77% dissolved organic N, respectively. These results indicate that alterations in land cover from natural to rural and urban are changing stream water chemistry in the Cerrado with increasing solute concentrations, in addition to increased TDN output in areas under urban cover, with potential effects on ecosystem function.