993 resultados para Cold forming machines


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel beam (LSB) subject to web crippling under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. The LSB sections with two rectangular hollow flanges are made using a simultaneous cold-forming and electric resistance welding process. Due to the geometry of the LSB, and its unique residual stress characteristics and initial geometric imperfections, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending, predominant shear and combined actions. To date, however, no investigation has been conducted on the web crippling behaviour and strength of LSB sections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs. Twenty-eight web crippling tests were conducted under ETF and ITF load cases, and the ultimate web crippling capacities were compared with the predictions from the design equations in AS/NZS 4600 and AISI S100. This comparison showed that AS/NZS 4600 and AISI S100 web crippling design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs based on experimental results. Suitable design rules were also developed under the direct strength method (DSM) format.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fire performance of cold-formed steel members is an important criterion to be verified for their successful use in structural applications. However, lack of clear design guidance on their fire performance has inhibited their usage in buildings. Their elevated temperature mechanical properties, i.e., yield strengths, elastic moduli and stress–strain relationships, are imperative for the fire design. In the past many researchers have proposed elevated temperature mechanical property reduction factors for cold-formed steels, however, large variations exist among them. The LiteSteel Beam (LSB), a hollow flange channel section, is manufactured by a combined cold-forming and electric resistance welding process. Its web, inner and outer flange elements have different yield strengths due to varying levels of cold-working caused by their manufacturing process. Elevated temperature mechanical properties of LSBs are not the same even within their cross-sections. Therefore an experimental study was undertaken to determine the elevated temperature mechanical properties of steel plate elements in LSBs. Elevated temperature tensile tests were performed on web, inner and outer flange specimens taken from LSBs, and their results are presented in this paper including their comparisons with previous studies. Based on the test results and the proposed values from previous studies and fire design standards, suitable predictive equations are proposed for the determination of elevated temperature mechanical properties of LSB web and flange elements. Suitable stress–strain models are also proposed for the plate elements of this cold-formed and welded hollow flange channel section.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a hollow flange channel made from cold-formed steel using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. LSBs are currently used as floor joists and bearers in buildings. However, there are no appropriate design standards available due to its unique hollow flange geometry, residual stress characteristics and initial geometric imperfections arising from manufacturing processes. Recent research studies have focused on investigating the structural behaviour of LSBs under pure bending, predominant shear and combined actions. However, web crippling behaviour and strengths of LSBs still need to be examined. Therefore, an experimental study was undertaken to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 23 web crippling tests were performed and the results were compared with the current AS/NZS 4600 and AISI S100 design standards, which showed that the cold-formed steel design rules predicted the web crippling capacity of LSB sections very conservatively under EOF and IOF load cases. Therefore, suitably improved design equations were proposed to determine the web crippling capacity of LSBs based on experimental results. In addition, new design equations were also developed under the Direct Strength Method format. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases and the results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold forging of steel has been modelled using a physical simulation and the finite element method (FEM) to predict the conditions under which failure occurs. FEM was performed using FORGE2 software, which allows analysis of two-dimensional, axi-symmetric forging processes. Various cold forming processes were modelled. The material model has been validated through wire drawing and bulging experiments. The results will be applied to cold forging of industrial products such as fasteners.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a technique for the cold forming of thin-walled cylindrical tubes, aimed at obtaining a symmetrical joint with an unconventional forming technique, using elastomer rod. The purpose of this work is to investigate the influence of the anisotropy on the total forming force, through the use of elastomer for obtaining T-junctions, in order to get a better result between experimental values and the analytical solution. For total forming force forecasting, it will be used the upper-bound theory and for a better understanding on the anisotropy behavior of the material, it will be employed the quadratic yielding criterion proposed by Hill. The employed materials for such investigation were Aluminum, Brass and Copper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through a description of the productivity problems experienced by some enterprises, to optimize their respective production lines, results of poor performance or low quality, the following work aims to explain and demonstrate the practical application of the theory of overall equipment effectiveness (OEE) on cold lamination machines in a steel industry . The project, to ensure your goal, is based on structuring a complete planning to increase levels of performance, availability and quality relating to rolling. On completion of the work, will be presented forecasts of future goals for the OEE, to search for continuous improvement and global standards of efficiency, taking into account, the sector the company operates, the history of the laminators, and financial aspects

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through a description of the productivity problems experienced by some enterprises, to optimize their respective production lines, results of poor performance or low quality, the following work aims to explain and demonstrate the practical application of the theory of overall equipment effectiveness (OEE) on cold lamination machines in a steel industry . The project, to ensure your goal, is based on structuring a complete planning to increase levels of performance, availability and quality relating to rolling. On completion of the work, will be presented forecasts of future goals for the OEE, to search for continuous improvement and global standards of efficiency, taking into account, the sector the company operates, the history of the laminators, and financial aspects

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To assess in vitro the bond strength of a machined surface of a Au-Ti alloy to a veneering ceramic. Method and Materials: Metal strips of the alloy Au 1.7-Ti 0.1-Ir were milled from a semiproduct fabricated by continuous casting and cold forming. For comparison, the same alloy as well as a traditional Au-Pt-Pd-In alloy were used in the as-cast state. Six samples of each group were fabricated for the crack initiation test, according to ISO 9693:1999, by preparing appropriate metal strips that were veneered with ceramic using a standard firing procedure. The crack initiation test was performed in a universal testing machine. Load at fracture was recorded. Means of bond strength were calculated for each group and the results compared by use of a 1-sided Student t test (P < .05). Fracture sites were documented by means of SEM. Results: Bond strength in the 3 groups was in the same order of magnitude. Failure mode was different for both alloys. Failure of the bonding to the Au-Ti alloy predominantly occurred at the alloy-oxide interface, no matter which fabrication process was used. On the Au-Pt-Pd-In alloy, more ceramic residues were observed. Conclusion: The machined alloy Au 1.7-Ti 0.1-Ir provides sufficient bond strength to veneering ceramics, but this has to be proven by a clinical study. (Quintessence Int 2007;38:867-872).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.