995 resultados para Cognitive Radio
Resumo:
Questa tesi si propone di presentare e classificare per caratteristiche simili i protocolli di routing che ad oggi sono utilizzati nelle Cognitive Radio Ad Hoc Networks. Pertanto dapprima nel Capitolo 1 si introdurranno le radio cognitive con i concetti che sono alla base di questa tecnologia e le principali motivazioni che hanno portato alla loro nascita e poi al loro sviluppo. Nel Capitolo 2 si parlerà delle cognitive networks o meglio delle cognitive radio networks, e delle loro peculiarità. Nel terzo e nel quarto capitolo si affronteranno le CRAHNs e in particolare quali sono le sfide a cui devono far fronte i protocolli di routing che operano su di essa, partendo dall'esaminare quali sono le differenze che distinguono questa tipologia di rete da una classica rete wireless ad hoc con nodi in grado di muoversi nello spazio (una MANET). Infine nell'ultimo capitolo si cercherà di classificare i protocolli in base ad alcune loro caratteristiche, vedendo poi più nel dettaglio alcuni tra i protocolli più usati.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Existing wireless networks are characterized by a fixed spectrum assignment policy. However, the scarcity of available spectrum and its inefficient usage demands for a new communication paradigm to exploit the existing spectrum opportunistically. Future Cognitive Radio (CR) devices should be able to sense unoccupied spectrum and will allow the deployment of real opportunistic networks. Still, traditional Physical (PHY) and Medium Access Control (MAC) protocols are not suitable for this new type of networks because they are optimized to operate over fixed assigned frequency bands. Therefore, novel PHY-MAC cross-layer protocols should be developed to cope with the specific features of opportunistic networks. This thesis is mainly focused on the design and evaluation of MAC protocols for Decentralized Cognitive Radio Networks (DCRNs). It starts with a characterization of the spectrum sensing framework based on the Energy-Based Sensing (EBS) technique considering multiple scenarios. Then, guided by the sensing results obtained by the aforementioned technique, we present two novel decentralized CR MAC schemes: the first one designed to operate in single-channel scenarios and the second one to be used in multichannel scenarios. Analytical models for the network goodput, packet service time and individual transmission probability are derived and used to compute the performance of both protocols. Simulation results assess the accuracy of the analytical models as well as the benefits of the proposed CR MAC schemes.
Resumo:
The ever increasing demand for new services from users who want high-quality broadband services while on the move, is straining the efficiency of current spectrum allocation paradigms, leading to an overall feeling of spectrum scarcity. In order to circumvent this problem, two possible solutions are being investigated: (i) implementing new technologies capable of accessing the temporarily/locally unused bands, without interfering with the licensed services, like Cognitive Radios; (ii) release some spectrum bands thanks to new services providing higher spectral efficiency, e.g., DVB-T, and allocate them to new wireless systems. These two approaches are promising, but also pose novel coexistence and interference management challenges to deal with. In particular, the deployment of devices such as Cognitive Radio, characterized by the inherent unplanned, irregular and random locations of the network nodes, require advanced mathematical techniques in order to explicitly model their spatial distribution. In such context, the system performance and optimization are strongly dependent on this spatial configuration. On the other hand, allocating some released spectrum bands to other wireless services poses severe coexistence issues with all the pre-existing services on the same or adjacent spectrum bands. In this thesis, these methodologies for better spectrum usage are investigated. In particular, using Stochastic Geometry theory, a novel mathematical framework is introduced for cognitive networks, providing a closed-form expression for coverage probability and a single-integral form for average downlink rate and Average Symbol Error Probability. Then, focusing on more regulatory aspects, interference challenges between DVB-T and LTE systems are analysed proposing a versatile methodology for their proper coexistence. Moreover, the studies performed inside the CEPT SE43 working group on the amount of spectrum potentially available to Cognitive Radios and an analysis of the Hidden Node problem are provided. Finally, a study on the extension of cognitive technologies to Hybrid Satellite Terrestrial Systems is proposed.
Resumo:
This research work presents the design and implementation of a FFT pruning block, which is an extension to the FFT core for OFDM demodulation, enabling run-time 8 pruning of the FFT algorithm, without any restrictions on the distribution pattern of the active/inactive sub-carriers. The design and implementation of FFT processor core is not the part of this work. The whole design was prototyped on an ALTERA STRATIX V FPGA to evaluate the performance of the pruning engine. Synthesis and simulation results showed that the logic overhead introduced by the pruning block is limited to a 10% of the total resources utilization. Moreover, in presence of a medium-high scattering of the sub-carriers, power and energy consumption of the FFT core were reduced by a 30% factor.
Resumo:
Spectrum sensing su piattaforma software defined radio: Implementazione e test su stick dvb-t
Resumo:
Spectrum sensing is currently one of the most challenging design problems in cognitive radio. A robust spectrum sensing technique is important in allowing implementation of a practical dynamic spectrum access in noisy and interference uncertain environments. In addition, it is desired to minimize the sensing time, while meeting the stringent cognitive radio application requirements. To cope with this challenge, cyclic spectrum sensing techniques have been proposed. However, such techniques require very high sampling rates in the wideband regime and thus are costly in hardware implementation and power consumption. In this thesis the concept of compressed sensing is applied to circumvent this problem by utilizing the sparsity of the two-dimensional cyclic spectrum. Compressive sampling is used to reduce the sampling rate and a recovery method is developed for re- constructing the sparse cyclic spectrum from the compressed samples. The reconstruction solution used, exploits the sparsity structure in the two-dimensional cyclic spectrum do-main which is different from conventional compressed sensing techniques for vector-form sparse signals. The entire wideband cyclic spectrum is reconstructed from sub-Nyquist-rate samples for simultaneous detection of multiple signal sources. After the cyclic spectrum recovery two methods are proposed to make spectral occupancy decisions from the recovered cyclic spectrum: a band-by-band multi-cycle detector which works for all modulation schemes, and a fast and simple thresholding method that works for Binary Phase Shift Keying (BPSK) signals only. In addition a method for recovering the power spectrum of stationary signals is developed as a special case. Simulation results demonstrate that the proposed spectrum sensing algorithms can significantly reduce sampling rate without sacrifcing performance. The robustness of the algorithms to the noise uncertainty of the wireless channel is also shown.
Resumo:
Las redes de sensores inalámbricas son uno de los sectores con más crecimiento dentro de las redes inalámbricas. La rápida adopción de estas redes como solución para muchas nuevas aplicaciones ha llevado a un creciente tráfico en el espectro radioeléctrico. Debido a que las redes inalámbricas de sensores operan en las bandas libres Industrial, Scientific and Medical (ISM) se ha producido una saturación del espectro que en pocos años no permitirá un buen funcionamiento. Con el objetivo de solucionar este tipo de problemas ha aparecido el paradigma de Radio Cognitiva (CR). La introducción de las capacidades cognitivas en las redes inalámbricas de sensores permite utilizar estas redes para aplicaciones con unos requisitos más estrictos respecto a fiabilidad, cobertura o calidad de servicio. Estas redes que aúnan todas estas características son llamadas redes de sensores inalámbricas cognitivas (CWSNs). La mejora en prestaciones de las CWSNs permite su utilización en aplicaciones críticas donde antes no podían ser utilizadas como monitorización de estructuras, de servicios médicos, en entornos militares o de vigilancia. Sin embargo, estas aplicaciones también requieren de otras características que la radio cognitiva no nos ofrece directamente como, por ejemplo, la seguridad. La seguridad en CWSNs es un aspecto poco desarrollado al ser una característica no esencial para su funcionamiento, como pueden serlo el sensado del espectro o la colaboración. Sin embargo, su estudio y mejora es esencial de cara al crecimiento de las CWSNs. Por tanto, esta tesis tiene como objetivo implementar contramedidas usando las nuevas capacidades cognitivas, especialmente en la capa física, teniendo en cuenta las limitaciones con las que cuentan las WSNs. En el ciclo de trabajo de esta tesis se han desarrollado dos estrategias de seguridad contra ataques de especial importancia en redes cognitivas: el ataque de simulación de usuario primario (PUE) y el ataque contra la privacidad eavesdropping. Para mitigar el ataque PUE se ha desarrollado una contramedida basada en la detección de anomalías. Se han implementado dos algoritmos diferentes para detectar este ataque: el algoritmo de Cumulative Sum y el algoritmo de Data Clustering. Una vez comprobado su validez se han comparado entre sí y se han investigado los efectos que pueden afectar al funcionamiento de los mismos. Para combatir el ataque de eavesdropping se ha desarrollado una contramedida basada en la inyección de ruido artificial de manera que el atacante no distinga las señales con información del ruido sin verse afectada la comunicación que nos interesa. También se ha estudiado el impacto que tiene esta contramedida en los recursos de la red. Como resultado paralelo se ha desarrollado un marco de pruebas para CWSNs que consta de un simulador y de una red de nodos cognitivos reales. Estas herramientas han sido esenciales para la implementación y extracción de resultados de la tesis. ABSTRACT Wireless Sensor Networks (WSNs) are one of the fastest growing sectors in wireless networks. The fast introduction of these networks as a solution in many new applications has increased the traffic in the radio spectrum. Due to the operation of WSNs in the free industrial, scientific, and medical (ISM) bands, saturation has ocurred in these frequencies that will make the same operation methods impossible in the future. Cognitive radio (CR) has appeared as a solution for this problem. The networks that join all the mentioned features together are called cognitive wireless sensor networks (CWSNs). The adoption of cognitive features in WSNs allows the use of these networks in applications with higher reliability, coverage, or quality of service requirements. The improvement of the performance of CWSNs allows their use in critical applications where they could not be used before such as structural monitoring, medical care, military scenarios, or security monitoring systems. Nevertheless, these applications also need other features that cognitive radio does not add directly, such as security. The security in CWSNs has not yet been explored fully because it is not necessary field for the main performance of these networks. Instead, other fields like spectrum sensing or collaboration have been explored deeply. However, the study of security in CWSNs is essential for their growth. Therefore, the main objective of this thesis is to study the impact of some cognitive radio attacks in CWSNs and to implement countermeasures using new cognitive capabilities, especially in the physical layer and considering the limitations of WSNs. Inside the work cycle of this thesis, security strategies against two important kinds of attacks in cognitive networks have been developed. These attacks are the primary user emulator (PUE) attack and the eavesdropping attack. A countermeasure against the PUE attack based on anomaly detection has been developed. Two different algorithms have been implemented: the cumulative sum algorithm and the data clustering algorithm. After the verification of these solutions, they have been compared and the side effects that can disturb their performance have been analyzed. The developed approach against the eavesdropping attack is based on the generation of artificial noise to conceal information messages. The impact of this countermeasure on network resources has also been studied. As a parallel result, a new framework for CWSNs has been developed. This includes a simulator and a real network with cognitive nodes. This framework has been crucial for the implementation and extraction of the results presented in this thesis.
Resumo:
El consumo energético de las Redes de Sensores Inalámbricas (WSNs por sus siglas en inglés) es un problema histórico que ha sido abordado desde diferentes niveles y visiones, ya que no solo afecta a la propia supervivencia de la red sino que el creciente uso de dispositivos inteligentes y el nuevo paradigma del Internet de las Cosas hace que las WSNs tengan cada vez una mayor influencia en la huella energética. Debido a la tendencia al alza en el uso de estas redes se añade un nuevo problema, la saturación espectral. Las WSNs operan habitualmente en bandas sin licencia como son las bandas Industrial, Científica y Médica (ISM por sus siglas en inglés). Estas bandas se comparten con otro tipo de redes como Wi-Fi o Bluetooth cuyo uso ha crecido exponencialmente en los últimos años. Para abordar este problema aparece el paradigma de la Radio Cognitiva (CR), una tecnología que permite el acceso oportunista al espectro. La introducción de capacidades cognitivas en las WSNs no solo permite optimizar su eficiencia espectral sino que también tiene un impacto positivo en parámetros como la calidad de servicio, la seguridad o el consumo energético. Sin embargo, por otra parte, este nuevo paradigma plantea algunos retos relacionados con el consumo energético. Concretamente, el sensado del espectro, la colaboración entre los nodos (que requiere comunicación adicional) y el cambio en los parámetros de transmisión aumentan el consumo respecto a las WSN clásicas. Teniendo en cuenta que la investigación en el campo del consumo energético ha sido ampliamente abordada puesto que se trata de una de sus principales limitaciones, asumimos que las nuevas estrategias deben surgir de las nuevas capacidades añadidas por las redes cognitivas. Por otro lado, a la hora de diseñar estrategias de optimización para CWSN hay que tener muy presentes las limitaciones de recursos de estas redes en cuanto a memoria, computación y consumo energético de los nodos. En esta tesis doctoral proponemos dos estrategias de reducción de consumo energético en CWSNs basadas en tres pilares fundamentales. El primero son las capacidades cognitivas añadidas a las WSNs que proporcionan la posibilidad de adaptar los parámetros de transmisión en función del espectro disponible. La segunda es la colaboración, como característica intrínseca de las CWSNs. Finalmente, el tercer pilar de este trabajo es teoría de juegos como algoritmo de soporte a la decisión, ampliamente utilizado en WSNs debido a su simplicidad. Como primer aporte de la tesis se presenta un análisis completo de las posibilidades introducidas por la radio cognitiva en materia de reducción de consumo para WSNs. Gracias a las conclusiones extraídas de este análisis, se han planteado las hipótesis de esta tesis relacionadas con la validez de usar capacidades cognitivas como herramienta para la reducción de consumo en CWSNs. Una vez presentada las hipótesis, pasamos a desarrollar las principales contribuciones de la tesis: las dos estrategias diseñadas para reducción de consumo basadas en teoría de juegos y CR. La primera de ellas hace uso de un juego no cooperativo que se juega mediante pares de jugadores. En la segunda estrategia, aunque el juego continúa siendo no cooperativo, se añade el concepto de colaboración. Para cada una de las estrategias se presenta el modelo del juego, el análisis formal de equilibrios y óptimos y la descripción de la estrategia completa donde se incluye la interacción entre nodos. Con el propósito de probar las estrategias mediante simulación e implementación en dispositivos reales hemos desarrollado un marco de pruebas compuesto por un simulador cognitivo y un banco de pruebas formado por nodos cognitivos capaces de comunicarse en tres bandas ISM desarrollados en el B105 Lab. Este marco de pruebas constituye otra de las aportaciones de la tesis que permitirá el avance en la investigación en el área de las CWSNs. Finalmente, se presentan y discuten los resultados derivados de la prueba de las estrategias desarrolladas. La primera estrategia proporciona ahorros de energía mayores al 65% comparados con una WSN sin capacidades cognitivas y alrededor del 25% si la comparamos con una estrategia cognitiva basada en el sensado periódico del espectro para el cambio de canal de acuerdo a un nivel de ruido fijado. Este algoritmo se comporta de forma similar independientemente del nivel de ruido siempre que éste sea espacialmente uniformemente. Esta estrategia, a pesar de su sencillez, nos asegura el comportamiento óptimo en cuanto a consumo energético debido a la utilización de teoría de juegos en la fase de diseño del comportamiento de los nodos. La estrategia colaborativa presenta mejoras respecto a la anterior en términos de protección frente al ruido en escenarios de ruido más complejos donde aporta una mejora del 50% comparada con la estrategia anterior. ABSTRACT Energy consumption in Wireless Sensor Networks (WSNs) is a known historical problem that has been addressed from different areas and on many levels. But this problem should not only be approached from the point of view of their own efficiency for survival. A major portion of communication traffic has migrated to mobile networks and systems. The increased use of smart devices and the introduction of the Internet of Things (IoT) give WSNs a great influence on the carbon footprint. Thus, optimizing the energy consumption of wireless networks could reduce their environmental impact considerably. In recent years, another problem has been added to the equation: spectrum saturation. Wireless Sensor Networks usually operate in unlicensed spectrum bands such as Industrial, Scientific, and Medical (ISM) bands shared with other networks (mainly Wi-Fi and Bluetooth). To address the efficient spectrum utilization problem, Cognitive Radio (CR) has emerged as the key technology that enables opportunistic access to the spectrum. Therefore, the introduction of cognitive capabilities to WSNs allows optimizing their spectral occupation. Cognitive Wireless Sensor Networks (CWSNs) do not only increase the reliability of communications, but they also have a positive impact on parameters such as the Quality of Service (QoS), network security, or energy consumption. These new opportunities introduced by CWSNs unveil a wide field in the energy consumption research area. However, this also implies some challenges. Specifically, the spectrum sensing stage, collaboration among devices (which requires extra communication), and changes in the transmission parameters increase the total energy consumption of the network. When designing CWSN optimization strategies, the fact that WSN nodes are very limited in terms of memory, computational power, or energy consumption has to be considered. Thus, light strategies that require a low computing capacity must be found. Since the field of energy conservation in WSNs has been widely explored, we assume that new strategies could emerge from the new opportunities presented by cognitive networks. In this PhD Thesis, we present two strategies for energy consumption reduction in CWSNs supported by three main pillars. The first pillar is that cognitive capabilities added to the WSN provide the ability to change the transmission parameters according to the spectrum. The second pillar is that the ability to collaborate is a basic characteristic of CWSNs. Finally, the third pillar for this work is the game theory as a decision-making algorithm, which has been widely used in WSNs due to its lightness and simplicity that make it valid to operate in CWSNs. For the development of these strategies, a complete analysis of the possibilities is first carried out by incorporating the cognitive abilities into the network. Once this analysis has been performed, we expose the hypotheses of this thesis related to the use of cognitive capabilities as a useful tool to reduce energy consumption in CWSNs. Once the analyses are exposed, we present the main contribution of this thesis: the two designed strategies for energy consumption reduction based on game theory and cognitive capabilities. The first one is based on a non-cooperative game played between two players in a simple and selfish way. In the second strategy, the concept of collaboration is introduced. Despite the fact that the game used is also a non-cooperative game, the decisions are taken through collaboration. For each strategy, we present the modeled game, the formal analysis of equilibrium and optimum, and the complete strategy describing the interaction between nodes. In order to test the strategies through simulation and implementation in real devices, we have developed a CWSN framework composed by a CWSN simulator based on Castalia and a testbed based on CWSN nodes able to communicate in three different ISM bands. We present and discuss the results derived by the energy optimization strategies. The first strategy brings energy improvement rates of over 65% compared to WSN without cognitive techniques. It also brings energy improvement rates of over 25% compared with sensing strategies for changing channels based on a decision threshold. We have also seen that the algorithm behaves similarly even with significant variations in the level of noise while working in a uniform noise scenario. The collaborative strategy presents improvements respecting the previous strategy in terms of noise protection when the noise scheme is more complex where this strategy shows improvement rates of over 50%.
Resumo:
With the reformation of spectrum policy and the development of cognitive radio, secondary users will be allowed to access spectrums licensed to primary users. Spectrum auctions can facilitate this secondary spectrum access in a market-driven way. To design an efficient auction framework, we first study the supply and demand pressures and the competitive equilibrium of the secondary spectrum market, considering the spectrum reusability. In well-designed auctions, competition among participants should lead to the competitive equilibrium according to the traditional economic point of view. Then, a discriminatory price spectrum double auction framework is proposed for this market. In this framework, rational participants compete with each other by using bidding prices, and their profits are guaranteed to be non-negative. A near-optimal heuristic algorithm is also proposed to solve the auction clearing problem of the proposed framework efficiently. Experimental results verify the efficiency of the proposed auction clearing algorithm and demonstrate that competition among secondary users and primary users can lead to the competitive equilibrium during auction iterations using the proposed auction framework. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Cognitive radio (CR) is fast emerging as a promising technology that can meet the machine-to machine (M2M) communication requirements for spectrum utilization and power control for large number of machines/devices expected to be connected to the Internet-of Things (IoT). Power control in CR as a secondary user can been modelled as a non-cooperative game cost function to quantify and reduce its effects of interference while occupying the same spectrum as primary user without adversely affecting the required quality of service (QoS) in the network. In this paper a power loss exponent that factors in diverse operating environments for IoT is employed in the non-cooperative game cost function to quantify the required power of transmission in the network. The approach would enable various CRs to transmit with lesser power thereby saving battery consumption or increasing the number of secondary users thereby optimizing the network resources efficiently.
Resumo:
Over the past years, ray tracing (RT) models popularity has been increasing. From the nineties, RT has been used for field prediction in environment such as indoor and urban environments. Nevertheless, with the advent of new technologies, the channel model has become decidedly more dynamic and to perform RT simulations at each discrete time instant become computationally expensive. In this thesis, a new dynamic ray tracing (DRT) approach is presented in which from a single ray tracing simulation at an initial time t0, through analytical formulas we are able to track the motion of the interaction points. The benefits that this approach bring are that Doppler frequencies and channel prediction can be derived at every time instant, without recurring to multiple RT runs and therefore shortening the computation time. DRT performance was studied on two case studies and the results shows the accuracy and the computational gain that derives from this approach. Another issue that has been addressed in this thesis is the licensed band exhaustion of some frequency bands. To deal with this problem, a novel unselfish spectrum leasing scheme in cognitive radio networks (CRNs) is proposed that offers an energy-efficient solution minimizing the environmental impact of the network. In addition, a network management architecture is introduced and resource allocation is proposed as a constrained sum energy efficiency maximization problem. System simulations demonstrate an increment in the energy efficiency of the primary users’ network compared with previously proposed algorithms.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestrado em Engenharia Electrónica e Telecomunicações
Resumo:
Los sistemas de radio cognitivos son una solución a la deficiente distribución del espectro inalámbrico de frecuencias. Usando acceso dinámico al medio, los usuarios secundarios pueden comunicarse en canales de frecuencia disponibles, mientras los usuarios asignados no están usando dichos canales. Un buen sistema de mensajería de control es necesario para que los usuarios secundarios no interfieran con los usuarios primarios en las redes de radio cognitivas. Para redes en donde los usuarios son heterogéneos en frecuencia, es decir, no poseen los mismos canales de frecuencia para comunicarse, el grupo de canales utilizado para transmitir información de control debe elegirse cuidadosamente. Por esta razón, en esta tesis se estudian las ideas básicas de los esquemas de mensajería de control usados en las redes de radio cognitivas y se presenta un esquema adecuado para un control adecuado para usuarios heterogéneos en canales de frecuencia. Para ello, primero se presenta una nueva taxonomía para clasificar las estrategias de mensajería de control, identificando las principales características que debe cumplir un esquema de control para sistemas heterogéneos en frecuencia. Luego, se revisan diversas técnicas matemáticas para escoger el mínimo número de canales por los cuales se transmite la información de control. Después, se introduce un modelo de un esquema de mensajería de control que use el mínimo número de canales y que utilice las características de los sistemas heterogéneos en frecuencia. Por último, se comparan diversos esquemas de mensajería de control en términos de la eficiencia de transmisión.
Resumo:
Este proyecto estudia la tecnología Radio Cognitiva. El concepto clave de esta tecnología es que permite a usuarios sin licencia compartir el espectro radioeléctrico de forma oportunista con los usuarios con licencia. Para empezar, se analizarán las características principales, su funcionamiento y como coexisten con los usuarios principales. Más adelante, se explicaran los métodos que se usan para la gestión del espectro radioeléctrico y las actividades de estandarización para la implementación de las redes de radio cognitiva. Por último, se analizara la posibilidad de la implementación de esta tecnología en España, analizando las ventajas e inconvenientes de inicializar un mercado secundario del espectro radioeléctrico.