994 resultados para Cognitive Demand
Resumo:
Wireless networks rapidly became a fundamental pillar of everyday activities. Whether at work or elsewhere, people often benefits from always-on connections. This trend is likely to increase, and hence actual technologies struggle to cope with the increase in traffic demand. To this end, Cognitive Wireless Networks have been studied. These networks aim at a better utilization of the spectrum, by understanding the environment in which they operate, and adapt accordingly. In particular recently national regulators opened up consultations on the opportunistic use of the TV bands, which became partially free due to the digital TV switch over. In this work, we focus on the indoor use of of TVWS. Interesting use cases like smart metering and WiFI like connectivity arise, and are studied and compared against state of the art technology. New measurements for TVWS networks will be presented and evaluated, and fundamental characteristics of the signal derived. Then, building on that, a new model of spectrum sharing, which takes into account also the height from the terrain, is presented and evaluated in a real scenario. The principal limits and performance of TVWS operated networks will be studied for two main use cases, namely Machine to Machine communication and for wireless sensor networks, particularly for the smart grid scenario. The outcome is that TVWS are certainly interesting to be studied and deployed, in particular when used as an additional offload for other wireless technologies. Seeing TVWS as the only wireless technology on a device is harder to be seen: the uncertainity in channel availability is the major drawback of opportunistic networks, since depending on the primary network channel allocation might lead in having no channels available for communication. TVWS can be effectively exploited as offloading solutions, and most of the contributions presented in this work proceed in this direction.
Resumo:
Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.
Resumo:
Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.
Resumo:
What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.
Resumo:
Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.
Resumo:
In order to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. Transport modelling literature has been increasingly aware that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users’ social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced; but links between international and Spanish perspectives are rarely dealt with. The overall objective of the thesis is to develop a stepped methodology that integrate diverse perspectives to evaluate the willingness to change patterns of urban mobility in Madrid, based on four steps: (1st) analysis of causal relationships between both objective and subjective personal variables, and travel behavior to capture pro-car and pro-public transport intentions; (2nd) exploring the potential influence of individual trip characteristics and social influence variables on transport mode choice; (3rd) identifying built environment dimensions on travel behavior; and (4th) exploring the potential influence on transport mode choice of extrinsic characteristics of individual trip using panel data, land use variables using spatial characteristics and social influence variables. The data used for this thesis have been collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) carried out in Madrid. Although the steps above are mainly methodological, the application to the area of Madrid allows deriving important results that can be directly used to forecast travel demand and to evaluate the benefits of specific policies that might be implemented in the area. The results demonstrated, respectively: (1st) transport policy actions are more likely to be effective when pro-car intention has been disrupted first; (2nd) the consideration of “helped” and “voluntary” users as tested here could have a positive and negative impact, respectively, on the use of public transport; (3rd) the importance of density, design, diversity and accessibility underlying dimensions responsible for land use variables; and (4th) there are clearly different types of combinations of social interactions, land use and time frame on travel behavior studies. Finally, with the objective to study the impact of demand measures to change urban mobility behavior, those previous results have been considered in a unique way, a hybrid discrete choice model has been used on a 5th step. Then it can be concluded that urban mobility behavior is not only ruled by the maximum utility criterion, but also by a strong psychological-environment concept, developed without the mediation of cognitive processes during choice, i.e., many people using public transport on their way to work do not do it for utilitarian reasons, but because no other choice is available. Regarding built environment dimensions, the more diversity place of residence, the more difficult the use of public transport or walking.
Resumo:
With the reformation of spectrum policy and the development of cognitive radio, secondary users will be allowed to access spectrums licensed to primary users. Spectrum auctions can facilitate this secondary spectrum access in a market-driven way. To design an efficient auction framework, we first study the supply and demand pressures and the competitive equilibrium of the secondary spectrum market, considering the spectrum reusability. In well-designed auctions, competition among participants should lead to the competitive equilibrium according to the traditional economic point of view. Then, a discriminatory price spectrum double auction framework is proposed for this market. In this framework, rational participants compete with each other by using bidding prices, and their profits are guaranteed to be non-negative. A near-optimal heuristic algorithm is also proposed to solve the auction clearing problem of the proposed framework efficiently. Experimental results verify the efficiency of the proposed auction clearing algorithm and demonstrate that competition among secondary users and primary users can lead to the competitive equilibrium during auction iterations using the proposed auction framework. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
English has been taught as a core and compulsory subject in China for decades. Recently, the demand for English in China has increased dramatically. China now has the world's largest English-learning population. The traditional English-teaching method cannot continue to be the only approach because it merely focuses on reading, grammar and translation, which cannot meet English learners and users' needs (i.e., communicative competence and skills in speaking and writing). ^ This study was conducted to investigate if the Picture-Word Inductive Model (PWIM), a new pedagogical method using pictures and inductive thinking, would benefit English learners in China in terms of potential higher output in speaking and writing. With the gauge of Cognitive Load Theory (CLT), specifically, its redundancy effect, I investigated whether processing words and a picture concurrently would present a cognitive overload for English learners in China. ^ I conducted a mixed methods research study. A quasi-experiment (pretest, intervention for seven weeks, and posttest) was conducted using 234 students in four groups in Lianyungang, China (58 fourth graders and 57 seventh graders as an experimental group with PWIM and 59 fourth graders and 60 seventh graders as a control group with the traditional method). No significant difference in the effects of PWIM was found on vocabulary acquisition based on grade levels. Observations, questionnaires with open-ended questions, and interviews were deployed to answer the three remaining research questions. A few students felt cognitively overloaded when they encountered too many writing samples, too many new words at one time, repeated words, mismatches between words and pictures, and so on. Many students listed and exemplified numerous strengths of PWIM, but a few mentioned weaknesses of PWIM. The students expressed the idea that PWIM had a positive effect on their English teaching. ^ As integrated inferences, qualitative findings were used to explain the quantitative results that there were no significant differences of the effects of the PWIM between the experimental and control groups in both grade levels, from four contextual aspects: time constraints on PWIM implementation, teachers' resistance, how to use PWIM and PWIM implemented in a classroom over 55 students.^
Resumo:
English has been taught as a core and compulsory subject in China for decades. Recently, the demand for English in China has increased dramatically. China now has the world’s largest English-learning population. The traditional English-teaching method cannot continue to be the only approach because it merely focuses on reading, grammar and translation, which cannot meet English learners and users’ needs (i.e., communicative competence and skills in speaking and writing). This study was conducted to investigate if the Picture-Word Inductive Model (PWIM), a new pedagogical method using pictures and inductive thinking, would benefit English learners in China in terms of potential higher output in speaking and writing. With the gauge of Cognitive Load Theory (CLT), specifically, its redundancy effect, I investigated whether processing words and a picture concurrently would present a cognitive overload for English learners in China. I conducted a mixed methods research study. A quasi-experiment (pretest, intervention for seven weeks, and posttest) was conducted using 234 students in four groups in Lianyungang, China (58 fourth graders and 57 seventh graders as an experimental group with PWIM and 59 fourth graders and 60 seventh graders as a control group with the traditional method). No significant difference in the effects of PWIM was found on vocabulary acquisition based on grade levels. Observations, questionnaires with open-ended questions, and interviews were deployed to answer the three remaining research questions. A few students felt cognitively overloaded when they encountered too many writing samples, too many new words at one time, repeated words, mismatches between words and pictures, and so on. Many students listed and exemplified numerous strengths of PWIM, but a few mentioned weaknesses of PWIM. The students expressed the idea that PWIM had a positive effect on their English teaching. As integrated inferences, qualitative findings were used to explain the quantitative results that there were no significant differences of the effects of the PWIM between the experimental and control groups in both grade levels, from four contextual aspects: time constraints on PWIM implementation, teachers’ resistance, how to use PWIM and PWIM implemented in a classroom over 55 students.
Resumo:
In the current world geospatial information is being demanded in almost real time, which requires the speed at which this data is processed and made available to the user to be at an all-time high. In order to keep up with this ever increasing speed, analysts must find ways to increase their productivity. At the same time the demand for new analysts is high, and current methods of training are long and can be costly. Through the use of human computer interactions and basic networking systems, this paper explores new ways to increase efficiency in data processing and analyst training.
Resumo:
In this critical essay, we respond to Lindebaum’s (2016) argument that neuroscientific methodologies and data have been accepted prematurely in proposing novel management theory. We acknowledge that building new management theories requires firm foundations. We also find his distinction between demand and supply side forces helpful as an analytical framework identifying the momentum for the contemporary production of management theory. Nevertheless, some of the arguments Lindebaum (2016) puts forward, on closer inspection, can be contested, especially those related to the supply side of organizational cognitive neuroscience (OCN) research: fMRI data, motherhood statements and ethical concerns. We put forward a more positive case for OCN methodologies and data, as well as clarifying exactly what OCN really means, and its consequences for the development of strong management theory.
Resumo:
The abundance of visual data and the push for robust AI are driving the need for automated visual sensemaking. Computer Vision (CV) faces growing demand for models that can discern not only what images "represent," but also what they "evoke." This is a demand for tools mimicking human perception at a high semantic level, categorizing images based on concepts like freedom, danger, or safety. However, automating this process is challenging due to entropy, scarcity, subjectivity, and ethical considerations. These challenges not only impact performance but also underscore the critical need for interoperability. This dissertation focuses on abstract concept-based (AC) image classification, guided by three technical principles: situated grounding, performance enhancement, and interpretability. We introduce ART-stract, a novel dataset of cultural images annotated with ACs, serving as the foundation for a series of experiments across four key domains: assessing the effectiveness of the end-to-end DL paradigm, exploring cognitive-inspired semantic intermediaries, incorporating cultural and commonsense aspects, and neuro-symbolic integration of sensory-perceptual data with cognitive-based knowledge. Our results demonstrate that integrating CV approaches with semantic technologies yields methods that surpass the current state of the art in AC image classification, outperforming the end-to-end deep vision paradigm. The results emphasize the role semantic technologies can play in developing both effective and interpretable systems, through the capturing, situating, and reasoning over knowledge related to visual data. Furthermore, this dissertation explores the complex interplay between technical and socio-technical factors. By merging technical expertise with an understanding of human and societal aspects, we advocate for responsible labeling and training practices in visual media. These insights and techniques not only advance efforts in CV and explainable artificial intelligence but also propel us toward an era of AI development that harmonizes technical prowess with deep awareness of its human and societal implications.
Resumo:
This study aimed to evaluate long-term atrophy in contralateral hippocampal volume after surgery for unilateral MTLE, as well as the cognitive outcome for patients submitted to either selective transsylvian amygdalohippocampectomy (SelAH) or anterior temporal lobe resection (ATL). We performed a longitudinal study of 47 patients with MRI signs of unilateral hippocampal sclerosis (23 patients with right-sided hippocampal sclerosis) who underwent surgical treatment for MTLE. They underwent preoperative/postoperative high-resolution MRI as well as neuropsychological assessment for memory and estimated IQ. To investigate possible changes in the contralateral hippocampus of patients, we included 28 controls who underwent two MRIs at long-term intervals. The volumetry using preoperative MRI showed significant hippocampal atrophy ipsilateral to the side of surgery when compared with controls (p<0.0001) but no differences in contralateral hippocampal volumes. The mean postoperative follow-up was 8.7 years (± 2.5 SD; median=8.0). Our patients were classified as Engel I (80%), Engel II (18.2%), and Engel III (1.8%). We observed a small but significant reduction in the contralateral hippocampus of patients but no volume changes in controls. Most of the patients presented small declines in both estimated IQ and memory, which were more pronounced in patients with left TLE and in those with persistent seizures. Different surgical approaches did not impose differences in seizure control or in cognitive outcome. We observed small declines in cognitive scores with most of these patients, which were worse in patients with left-sided resection and in those who continued to suffer from postoperative seizures. We also demonstrated that manual volumetry can reveal a reduction in volume in the contralateral hippocampus, although this change was mild and could not be detected by visual analysis. These new findings suggest that dynamic processes continue to act after the removal of the hippocampus, and further studies with larger groups may help in understanding the underlying mechanisms.
Resumo:
this study aimed to investigate the cognitive and behavioral profiles, as well as the psychiatric symptoms and disorders in children with three different genetic syndromes with similar sociocultural and socioeconomic backgrounds. thirty-four children aged 6 to 16 years, with Williams-Beuren syndrome (n=10), Prader-Willi syndrome (n=11), and Fragile X syndrome (n=13) from the outpatient clinics of Child Psychiatry and Medical Genetics Department were cognitively assessed through the Wechsler Intelligence Scale for Children (WISC-III). Afterwards, a full-scale intelligence quotient (IQ), verbal IQ, performance IQ, standard subtest scores, as well as frequency of psychiatric symptoms and disorders were compared among the three syndromes. significant differences were found among the syndromes concerning verbal IQ and verbal and performance subtests. Post-hoc analysis demonstrated that vocabulary and comprehension subtest scores were significantly higher in Williams-Beuren syndrome in comparison with Prader-Willi and Fragile X syndromes, and block design and object assembly scores were significantly higher in Prader-Willi syndrome compared with Williams-Beuren and Fragile X syndromes. Additionally, there were significant differences between the syndromes concerning behavioral features and psychiatric symptoms. The Prader-Willi syndrome group presented a higher frequency of hyperphagia and self-injurious behaviors. The Fragile X syndrome group showed a higher frequency of social interaction deficits; such difference nearly reached statistical significance. the three genetic syndromes exhibited distinctive cognitive, behavioral, and psychiatric patterns.
Resumo:
A comparison of the oral health of elderly people with and without a cognitive handicap was assessed. The cognitive condition, the indices of decayed, missing, filled teeth (DMFT), decayed, filled roots (DFR), the need for dental treatment, the presence of plaque (P), calculus (C), the community periodontal index (CPI), the rate of periodontal attachment loss (PAL), edentulism, prosthetic use and the need for prosthetics were evaluated in a complex probabilistic sample by conglomerates of the elderly (65-74 years). PASW(r) 17.0 was used for the statistical analyses with correction for the design effect, applying the Mann Whitney and chi-square test with 95% reliability. A total of 736 elderly individuals were interviewed and examined. Those with cognitive impairment had higher average DMFT, DFR and lower average healthy sextant CPI, a lower prevalence of sextants without plaque/calculus, use of prosthetics and higher prevalence of edentulism and need for prosthetics. Elderly individuals with a cognitive handicap had poorer oral health.