214 resultados para Coexpression
Resumo:
Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.
Resumo:
The HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers and is essential for viral entry. The gp41 subunit in native, prefusion trimeric Env exists in a metastable conformation and attains a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives the fusion of viral and cellular membranes. We attempted to stabilize native Env trimers by incorporation of mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The mutations V570D and I573D stabilize native Env of the HIV-1 JRFL strain and occlude nonneutralizing epitopes to a greater extent than the previously identified I559P mutation that is at the interface of the NHR trimers in the 6-HB. The mutations prevent soluble-CD4 (sCD4)-induced gp120 shedding and 6-HB formation. In the context of cell surface-expressed JRFL Env, introduction of a previously reported additional disulfide between residues A501 and T605 perturbs the native conformation, though this effect is partially alleviated by furin coexpression. The data suggest that positions 570 and 573 are surface proximal in native Env and that the NHR homotrimeric coiled coil in native Env terminates before or close to residue 573. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the postfusion 6-HB conformation. These mutations can be used to stabilize Env in a DNA vaccine format. IMPORTANCE The major protein on the surface of HIV-1 is the envelope (Env) glycoprotein. Env is a trimer of gp120-gp41 heterodimers. gp120 is involved in receptor/coreceptor binding and gp41 in the fusion of viral and cellular membranes. Like many other viral fusion proteins, the gp41 subunit in native trimeric Env exists in a metastable conformation. gp41 readily forms a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers that drives fusion of viral and cellular membranes. While it is expected that native Env is a good immunogen, its metastability results in exposure of immunodominant nonneutralizing epitopes. In the present study, we stabilize native Env trimers by incorporation of a number of different mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The stabilized constructs described here can be incorporated into DNA vaccine candidates.
Resumo:
Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp-p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, C Delta 43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
Plant viruses exploit the host machinery for targeting the viral genome-movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein la (PDLP la) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER-GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER-GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130-138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm-NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/MoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage. (c) 2005 Wiley-Liss, Inc.
Resumo:
Sprouty proteins are key regulators of cell growth and branching morphogenesis during development. Human SPRY3 which maps to the pseudoautosomal region 2, undergoes random X-inactivation in females and preferential Y-inactivation in males, behaving as though genetically X-linked. Spry3 is widely expressed in neuronal tissues, being found at high levels in the cerebellum and particularly in the Purkinje cells which, notably, are deficient in the autistic brain. Spry3 is also highly expressed in other ganglia in adults including retinal ganglion cells, dorsal root ganglion and superior cervical ganglion. SPRY3 enhancer can drive SPRY3 expression in the lung airway, which is consistent with a role in branching morphogenesis and the function of the original Drosophila Spry gene, which is critical for lung morphogenesis, providing a possible explanation for an observed anatomic abnormality in the autistic lung airway. In the human and mouse, the SPRY3 core promoter contains an AG-rich repeat and we found evidence of coexpression, promoter binding and regulation of SPRY3 expression by transcription factors EGR1, ZNF263 and PAX6. Spry3 over-expression in mouse superior cervical ganglion cells inhibits axon branching and Spry3 knockdown in those cells increases axon branching, consistent with known functions of other Sprouty proteins. Novel SPRY3 upstream transcripts that I characterised originate from three start sites in the X-linked F8A3 – TMLHE gene region, which is recently implicated in autism causation. Arising from these findings, I propose that the lung airway abnormality and low levels of blood carnitine found in autism suggest that deregulation of SPRY3 may underpin a subset of autism cases.
Resumo:
Deregulation of the Sonic hedgehog pathway has been implicated in an increasing number of human cancers. In this pathway, the seven-transmembrane (7TM) signaling protein Smoothened regulates cellular proliferation and differentiation through activation of the transcription factor Gli. The activity of mammalian Smoothened is controlled by three different hedgehog proteins, Indian, Desert, and Sonic hedgehog, through their interaction with the Smoothened inhibitor Patched. However, the mechanisms of signal transduction from Smoothened are poorly understood. We show that a kinase which regulates signaling by many "conventional" 7TM G-protein-coupled receptors, G protein-coupled receptor kinase 2 (GRK2), participates in Smoothened signaling. Expression of GRK2, but not catalytically inactive GRK2, synergizes with active Smoothened to mediate Gli-dependent transcription. Moreover, knockdown of endogenous GRK2 by short hairpin RNA (shRNA) significantly reduces signaling in response to the Smoothened agonist SAG and also inhibits signaling induced by an oncogenic Smoothened mutant, Smo M2. We find that GRK2 promotes the association between active Smoothened and beta-arrestin 2. Indeed, Gli-dependent signaling, mediated by coexpression of Smoothened and GRK2, is diminished by beta-arrestin 2 knockdown with shRNA. Together, these data suggest that GRK2 plays a positive role in Smoothened signaling, at least in part, through the promotion of an association between beta-arrestin 2 and Smoothened.
Resumo:
Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.
Resumo:
The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.
Resumo:
My dissertation work integrates comparative transcriptomics and functional analyses to investigate gene expression changes underlying two significant aspects of sea urchin evolution and development: the dramatic developmental changes associated with an ecologically significant shift in life history strategy and the development of the unusual radial body plan of adult sea urchins.
In Chapter 2, I investigate evolutionary changes in gene expression underlying the switch from feeding (planktotrophic) to nonfeeding (lecithotrophic) development in sea urchins. In order to identify these changes, I used Illumina RNA-seq to measure expression dynamics across 7 developmental stages in three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and an outgroup planktotroph Lytechinus variegatus. My analyses draw on a well-characterized developmental gene regulatory network (GRN) in sea urchins to understand how the ancestral planktotrophic developmental program was altered during the evolution of lecithotrophic development. My results suggest that changes in gene expression profiles occurred more frequently across the transcriptome during the evolution of lecithotrophy than during the persistence of planktotrophy. These changes were even more pronounced within the GRN than across the transcriptome as a whole, and occurred in each network territory (skeletogenic, endomesoderm and ectoderm). I found evidence for both conservation and divergence of regulatory interactions in the network, as well as significant changes in the expression of genes with known roles in larval skeletogenesis, which is dramatically altered in lecithotrophs. I further explored network dynamics between species using coexpression analyses, which allowed me to identify novel players likely involved in sea urchin neurogenesis and endoderm patterning.
In Chapter 3, I investigate developmental changes in gene expression underlying radial body plan development and metamorphosis in H. erythrogramma. Using Illumina RNA-seq, I measured gene expression profiles across larval, metamorphic, and post-metamorphic life cycle phases. My results present a high-resolution view of gene expression dynamics during the complex transition from pre- to post-metamorphic development and suggest that distinct sets of regulatory and effector proteins are used during different life history phases.
Collectively, my investigations provide an important foundation for future, empirical studies to investigate the functional role of gene expression change in the evolution of developmental differences between species and also for the generation of the unusual radial body plan of sea urchins.
Resumo:
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.
Resumo:
Although the potential role of Pim2 as a cooperative oncogene has been well described in lymphoma, its role in leukemia has remained largely unexplored. Here we show that high expression of Pim2 is observed in patients with acute promyelocytic leukemia (APL). To further characterize the cooperative role of Pim2 with promyelocytic leukemia/retinoic acid receptor alpha (PML/RAR alpha), we used a well-established PML-RAR alpha (PR alpha) mouse model. Pim2 coexpression in PR alpha-positive hematopoietic progenitor cells (HPCs) induces leukemia in recipient mice after a short latency. Pim2-PR alpha cells were able to repopulate mice in serial transplantations and to induce disease in all recipients. Neither Pim2 nor PR alpha alone was sufficient to induce leukemia upon transplantation in this model. The disease induced by Pim2 overexpression in PR alpha cells contained a slightly higher fraction of immature myeloid cells, compared with the previously described APL disease induced by PR alpha. However, it also clearly resembled an APL-like phenotype and showed signs of differentiation upon all-trans retinoic acid (ATRA) treatment in vitro. These results support the hypothesis that Pim2, which is also a known target of Flt3-ITD (another gene that cooperates with PML-RAR alpha), cooperates with PR alpha to induce APL-like disease. (Blood. 2010; 115(22): 4507-4516)
Resumo:
We read the interesting research article published by van Nes et al. [1], which described the use of Snail and TWIST together in the prognosis of breast cancer, and in particular in estrogen receptor (ER)-positive breast cancer patients.
Resumo:
The core oligosaccharide component of the lipopolysaccharide can be subdivided into inner and outer core regions. In Escherichia coli, the inner core consists of two 3-deoxy-d-manno-octulosonic acid and three glycero-manno-heptose residues. The HldE protein participates in the biosynthesis of ADP-glycero-manno-heptose precursors used in the assembly of the inner core. HldE comprises two functional domains: an N-terminal region with homology to the ribokinase superfamily (HldE1 domain) and a C-terminal region with homology to the cytidylyltransferase superfamily (HldE2 domain). We have employed the structure of the E. coli ribokinase as a template to model the HldE1 domain and predict critical amino acids required for enzyme activity. Mutation of these residues renders the protein inactive as determined in vivo by functional complementation analysis. However, these mutations did not affect the secondary or tertiary structure of purified HldE1, as judged by fluorescence spectroscopy and circular dichroism. Furthermore, in vivo coexpression of wild-type, chromosomally encoded HldE and mutant HldE1 proteins with amino acid substitutions in the predicted ATP binding site caused a dominant negative phenotype as revealed by increased bacterial sensitivity to novobiocin. Copurification experiments demonstrated that HldE and HldE1 form a complex in vivo. Gel filtration chromatography resulted in the detection of a dimer as the predominant form of the native HldE1 protein. Altogether, our data support the notions that the HldE functional unit is a dimer and that structural components present in each HldE1 monomer are required for enzymatic activity.
Resumo:
Inflammation and TNF-alpha signaling play a central role in most of the pathological conditions where cell transplantation could be applied. As shown by initial experiments, embryonic stem (ES) cells and ES-cell derived vascular cells express very low levels of TNF-alpha receptor I (TNFRp55) and thus do not induce cytokine expression in response to TNF-alpha stimulation. Transient transfection analysis of wild-type or deletion variants of the TNFRp55 gene promoter showed a strong activity for a 250-bp fragment in the upstream region of the gene. This activity was abolished by mutations targeting the Sp1/Sp3 or AP1 binding sites. Moreover, treatment with trichostatin A (TSA) led to a pronounced increase in TNFRp55 mRNA and promoter activity. Overexpression of Sp1 or c-fos further enhanced the TSA-induced luciferase activity, and this response was attenuated by Sp3 or c-jun coexpression. Additional experiments revealed that TSA did not affect the Sp1/Sp3 ratio but caused transcriptional activation of the c-fos gene. Thus, we provide the first evidence that ES and ES-cell-derived vascular cells lack cytokine expression in response to TNF-alpha stimulation due to low levels of c-fos and transcriptional activation of Sp1 that can be regulated by inhibition of histone deacetylase activity.