995 resultados para Co-precipitation. Ferrites. Nanometrics. superparamagnetism
Resumo:
Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.
Resumo:
Maghemite (g-Fe2O3) is the most usually found ferrimagnetic oxide in red basalt-derived soils. The variable degrees of ionic substitution of Fe3+ for different metals (e.g. Ti4+, Al3+, Mg2+, Zn2+, and Mn2+) and non-metals in the maghemite structure influence some cristallochemical features of this iron oxide. In this study, synthetic Zn-substituted maghemites were prepared by co-precipitation in alkaline aqueous media of FeSO4.7H2O with increasing amounts of ZnSO4.7H2O to obtain the following sequence of Fe3+ for Zn2+ substitutions: 0.0, 0.025, 0.05, 0.10, 0.15, 0.20, and 0.30 mol mol-1. The objective of this work was to evaluate the cristallochemical alterations of synthetic Zn-substituted maghemites. The dark black synthetic precipitated material was heated to 250 °C during 4 h forming a brownish maghemite that was characterized by chemical analysis as well as X ray diffraction (XRD), specific surface area and mass-specific magnetic susceptibility. The isomorphic substitution levels observed were of 0.0013, 0.0297, 0.0590, 0.1145, 0.1764, 0.2292 and 0.3404 mol mol-1, with the formation of a series of maghemites from Fe2Zn0O3 to Fe(1.49)Zn(0.770)O3 . The increase in Fe3+ for Zn2+ substitution, [Zn mol mol-1] increased the dimension a0 of the cubic unit cells of the studied maghemites according to the regression equation: a0 = 0.8343 + 0.02591Zn (R² = 0.98). On the other hand, the mean crystallite dimension and mass-specific magnetic susceptibility of the studied maghemites decreased with increasing isomorphic substitution.
Resumo:
Acid mine drainage (AMD) is an environmental concern due to the risk of element mobilization, including toxic elements, and inclusion in the food chain. In this study, three cover layers were tested to minimize As, Fe and S mobilization from a substrate from former gold mining, containing pyrite and arsenopyrite. For this purpose, different layers (capillary break, sealant and cover layer) above the substrate and the induction of a geochemical barrier (GB) were used to provide suitable conditions for adsorption and co-precipitation of the mobilized As. Thirteen treatments were established to evaluate the leaching of As, Fe and S from a substrate in lysimeters. The pH, As, Fe, S, Na, and K concentrations and total volume of the leachates were determined. Mineralogical analyses were realized in the substrate at the end of the experimental period. Lowest amounts of As, Fe and S (average values of 5.47, 48.59 and 132.89 g/lysimeter) were leached in the treatments that received Na and K to induce GB formation. Mineralogical analyses indicated jarosite formation in the control treatment and in treatments that received Na and K salts. However, the jarosite amounts in these treatments were higher than in the control, suggesting that these salts accelerated the GB formation. High amounts of As, Fe and S (average values of 11.7, 103.94 and 201.13 g/lysimeter) were observed in the leachate from treatments without capillary break layer. The formation of geochemical barrier and the use of different layers over the sulfide substrate proved to be efficient techniques to decrease As, Fe and S mobilization and mitigate the impact of acid mine drainage.
Resumo:
In this work a method was developed for removing metallic ions from wastewaters by co-precipitation of Cu2+, Pb2+, Cd2+, Cr3+ and Hg2+ with chitosan and sodium hydroxide solution. Solutions of these metallic ions in the range from 0.55 to 2160 mg L-1 were added to chitosan dissolved in 0.05 mol L-1 HCl. For the co-precipitation of metal-chitosan-hydroxide a 0.17 mol L-1 NaOH solution was added until pH 8.5-9.5. A parallel study was carried out applying a 0.17 mol L-1 NaOH solution to precipitate those metallic ions. Also, a chitosan solid phase column was used for removing those metallic ions from wastewaters.
Resumo:
Hydrotalcite like compounds (HT) were prepared by co-precipitation (Mg/Al = 3.5), using an acid solution with blast furnace slag and MgCl2.6H2O and aqueous solutions of NaOH. The following synthesis variables were investigated: temperature (30 and 45 ºC) and pH (9 and 12). Depending of the temperature two systems were observed: Mg-Al-CO3 (T = 30 ºC); Mg-Al-Cl-CO3 (T = 45 ºC). An increase in the pH of synthesis and Mg2+ concentration produced HTs well-crystallized and with greater values of all cell parameters. The study showed the potentiality of BFS in the synthesis of well-crystallized LDHs without the presence of other crystalline phases.
Resumo:
Acid mine drainage (AMD) presents a serious problem for the environment for the massive formation of acidic leachates containing heavy metals. The present work deals with the AMD treatment using neutralizing limestone side-products. The conventional methods for prevention, mitigating and control of AMD formation are described. The experimental testing of Nordkalk Oy calcite-containing side-stones for acid neutralizing and removal of nickel from solutions presents the research objective. The batch experiments in acid neutralizing with subsequent metal content analysis were carried out. The results showed the dependence of pH on the dose of neutralizing material and the exposure time. The nickel removal, unlike iron, within the pH range from 1.2 to 6.0 appeared to be inadequate. The further research on nickel co-precipitation with iron and aluminium may appear to be necessary together with testing of alkalinity strengthening materials.
Resumo:
Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using a-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme.
Resumo:
Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest in up-converting phosphors in which the absorption of two or more low energy photons is followed by emission of a higher energy photon. Most up-conversion luminescence materials operate by using a combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the most sophisticated applications of lanthanide up-conversion luminescence is probably in medical diagnostics. However, there are some major problems in the use of photoluminescence based on the direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the emission of the phosphor in the visible. A promising way to overcome the problems arising from the blood absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has no capability for up-conversion in the excitation wavelength region of the conventional up-converting phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. The aim of this work was to prepare nanocrystalline materials with high red (and green) up-conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-conversion luminescence was introduced and discussed. For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. On the other hand, further work must be carried out to optimize the persistent up-conversion luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials combining the advantages of both up-conversion and persistent luminescence.
Resumo:
Gene therapy is predicated upon efficient gene transfer. While viral vectors are the method of choice for transformation efficiency, the immunogenicity and safety concerns remain problematic. Non-viral vectors, on the other hand, have shown high degrees of safety and are mostly non-immunogenic in nature. However, non-viral vectors usually suffer from low levels oftransformation efficiency and transgene expression. Thus, increasing transformation efficiency ofnon-viral vectors, in particular by calcium phosphate co-precipitation technique, is a way of generating a suitable vector for gene therapy and is the aim of this study. It is a long known fact that different cell lines have different transfection efficiencies regardless oftransfection methodology (Lin et a!., 1994). Using commonly available cell lines Madine-Darby Bovine Kidney (MDBK), HeLa and Human Embryonic Kidney (HEK-293), we have shown a decreasing trend ofDNase activity based on a plasmid digestion assay. From densitometry studies, as much as a 40% reduction in DNase activity was observed when comparing HEK-293 (least active) to MDBK (most active). Using various biochemical assays, it was determined that DNase y, in particular, was expressed more highly in MDBK cells than both HeLa and HEK-293. Upon cloning of the bovine DNase y gene, we utilized the sequence information to construct antisense expressing plasmids via both traditional antisense RNA (pASDGneoM) and siRNA (psiRNA-S4, psiRNA-S11 and psiRNA-S16). For the construction ofpASDGneoM, the 3' end of the DNase y was inserted in opposite orientation under a cytomegalovirus (CMV) promoter such that the expression ofRNA complementary to the DNase 2 ymRNA occurred. For siRNA plasmids, the sequence was screened to yield optimal short sequences for siRNA inhibition. The silencing ofbovine DNase y led to an increase in transfection efficiency based on traditional calcium phosphate co-precipitation technique; stable clones of siRNA-producing MDBK cell lines (psiRNA-S4 Bland psiRNA-S4 B4) both demol).strated 4-fold increases in transfection efficiency. Furthermore, serial transfection of antisense DNase y plasmid pASDGneoM and reporter pCMV-~ showed a maximum of 8-fold increase in transfection efficiency when the two separate transfections were carried out 4 hours apart (i.e. transfection ofpASDGneoM, separated by four hours, then transfection ofpCMV-~). Together, these results demonstrate the involvement ofDNase y in reducing transfection efficiency, at least by traditional calcium phosphate technique.
Resumo:
Spinel systems with the composition of Cu 1−x Zn x Cr 2 O 4 [x = 0 CCr, x = 0.25 CZCr-1, x = 0.5 CZCr-2, x = 0.75 CZCr-3 and x = 1 ZCr] were prepared by homogeneous co-precipitation method and were characterized by X-ray diffraction (XRD) and FT-IR spectroscopy. Elemental analysis was done by EDX, and surface area measurements by the BET method. The redox behavior of these catalysts in cyclohexane oxidation at 243 K using TBHP as oxidant was examined. Cyclohexanone was the major product over all catalysts with some cyclohexanol. 69.2% selectivity to cyclohexanol and cyclohexanone at 23% conversion of cyclohexane was realized over zinc chromite spinels in 10 h.
Resumo:
Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.
Resumo:
The prime intension of the present work was a synthetic investigation of the preparation, surface properties and catalytic activity of some transition metal substituted copper chromite catalysts. Homogeneous co-precipitation method is employed for the preparation of catalysts. Since the knowledge about the structure and composition of the surface is critical in explaining the reactivity and selectivity of a solid catalyst. a systematic investigation of the physico-chemical properties of the prepared systems was carried out. The catalytic activity of these systems has also been measured in several oxidation reactions of industrial as well as environmental relevance. The thesis is dedicated to several aspects of chromite spinels giving emphasis to its preparation, characterization and catalytic performance towards oxidation reactions.
Resumo:
Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications.
Resumo:
Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε and ε ), ac conductivity (σac) and dielectric loss tangent (tan δ), were measured in the frequency range of 100 kHz–8MHz at different temperatures. The variations of dielectric dispersion (ε ) and dielectric absorption (ε ) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell–Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σac = Bωn typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process
Resumo:
Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT–SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ∼110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT–SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT–SPION composite can be envisaged as a good agent for various biomedical applications