916 resultados para Cloud cover
Resumo:
Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
A study of a large number of published experiments on the behaviour of insects navigating by skylight has led to the design of a system for navigation in lightly clouded skies, suitable for a robot or drone. The design is based on the measurement of the directions in the sky at which the polarization angle, i.e. the angle χ between the polarized E-vector and the meridian, equals ±π/4 or ±(π/4 + π/3) or ±(π/4 - π/3). For any one of these three options, at any given elevation, there are usually 4 such directions and these directions can give the azimuth of the sun accurately in a few short steps, as an insect can do. A simulation shows that this compass is accurate as well as simple and well suited for an insect or robot. A major advantage of this design is that it is close to being invariant to variable cloud cover. Also if at least two of these 12 directions are observed the solar azimuth can still be found by a robot, and possibly by an insect.
Resumo:
Glacial cirques are armchair-shaped erosional hollows, typified by steep headwalls and, often, overdeepened floors. They reflect former regions of glacier initiation, and their distribution is, therefore, linked to palaeoclimate. Because of this association, cirques can be analysed for the information they provide about past environments, an approach that has a strong heritage, and has seen resurgence over recent years. This paper provides a critical assessment of what cirques can tell us about past environments, and considers their reliability as palaeoenvironmental proxies. Specific focus is placed on information that can be obtained from consideration of cirque distribution, aspect, altitude, and morphometry. The paper highlights the fact that cirques potentially provide information about the style, duration and intensity of former glaciation, as well as information about past temperatures, precipitation gradients, cloud-cover and wind directions. In all, cirques are considered a valuable source of palaeoenvironmental information (if used judiciously), particularly as they are ubiquitous within formerly glaciated mountain ranges globally, thus making regional or even global scale studies possible. Furthermore, cirques often occupy remote and inaccessible regions where other palaeoenvironmental proxies may be limited or lacking.
Resumo:
Monitoring of coastal and estuarine water quality has been traditionally performed by sampling with subsequent laboratory analysis. This has the disadvantages of low spatial and temporal resolution and high cost. In the last decades two alternative techniques have emerged to overcome this drawback: profiling and remote sensing. Profiling using multi-parameter sensors is now in a commercial stage. It can be used, tied to a boat, to obtain a quick “picture” of the system. The spatial resolution thus increases from single points to a line coincident with the boat track. The temporal resolution however remains unchanged since campaigns and resources involved are basically the same. The need for laboratory analysis was reduced but not eliminated because parameters like nutrients, microbiology or metals are still difficult to obtain with sensors and validation measurements are still needed. In the last years the improvement in satellite resolution has enabled its use for coastal and estuarine water monitoring. Although spatial coverage and resolution of satellite images in the present is already suitable to coastal and estuarine monitoring, temporal resolution is naturally limited to satellite passages and cloud cover. With this panorama the best approach to water monitoring is to integrate and combine data from all these sources. The natural tools to perform this integration are numerical models. Models benefit from the different sources of data to obtain a better calibration. After calibration they can be used to extend spatially and temporally the methods resolution. In Algarve (South of Portugal) a monitoring effort using this approach is being undertaken. The monitoring effort comprises five different locations including coastal waters, estuaries and coastal lagoons. The objective is to establish the base line situation to evaluate the impact of Waste Water Treatment Plants design and retrofitting. The field campaigns include monthly synoptic profiling, using an YSI 6600 multi-parameter system, laboratory analysis and fixed stations. The remote sensing uses ENVISAT\MERIS Level 2 Full Resolution data. This data is combined and used with the MOHID modelling system to obtain an integrate description of the systems. The results show the limitations of each method and the ability of the modelling system to integrate the results and to produce a comprehensive picture of the system.
Resumo:
Senior thesis written for Oceanography 444
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós-Graduação em Geografia, 2015.
Resumo:
The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.
Resumo:
Les naines brunes sont des objets astronomiques de faible masse ( 0.012 - 0.075 M_Sun ) et de basse température ( T < 3,500 K ). Bien qu’elles se forment comme des étoiles, c’est-à-dire par l’effondrement d’un nuage de gaz moléculaire, les naines brunes n’ont pas une masse suffisante pour entretenir des réactions de fusion nucléaire en leur coeur. Les naines brunes relativement chaudes (type L) sont recouvertes de nuages de poussière mais ces derniers disparaissent progressivement de l’atmosphère lorsque la température chute sous les 1,500 K (type T). Les naines brunes près de la transition L/T devraient donc être partiellement recouvertes de nuages. De par leur rotation relativement rapide (2 h - 12 h), le couvert nuageux inhomogène des naines brunes devrait produire une variabilité photométrique observable en bande J (1.2 um), la longueur d’onde à laquelle les nuages ont la plus forte opacité. Ce mémoire présente les résultats d’une recherche de variabilité photométrique infrarouge pour une dizaine de naines brunes de type spectral près de la transition L/T. Les observations, obtenues à l’Observatoire du Mont-Mégantic, ont permis le suivi photométrique en bande J de neuf cibles. Une seule d’entre elles, SDSS J105213.51+442255.7 (T0.5), montre des variations périodiques sur une période d’environ 3 heures avec une amplitude pic-à-pic variant entre 40 et 80 mmag. Pour les huit autres cibles, on peut imposer des limites (3 sigma) de variabilité périodique à moins de 15 mmag pour des périodes entre 1 et 6 heures. Ces résultats supportent l’hypothèse qu’un couvert nuageux partiel existe pour des naines brunes près de la transition L/T mais ce phénomène demeure relativement peu fréquent.
Resumo:
Ce travail s’inscrit dans le cadre d’un programme de recherches appuyé par le Conseil de recherches en sciences humaines du Canada.
Resumo:
The study is undertaken with an objective to investigate the linkage between air-sea fluxes in the Indian Ocean and monsoon forcing. Since the monsoon activity is linked to fluxes, the variability of surface marine meteorological fields under the variable monsoon conditions is also studied. The very objective of the present study is to document various sea surface parameters of the Indian Ocean and to examine the anomalies found in them. Hence it is attempted to relate the anomaly to the variability of monsoon over India, highlighting the occasion of contrasting monsoon periods. The analysis of anomalies of surface meteorological fields such as SST, wind speed and direction, sea level pressure and cloud cover for contrasting monsoons are also studied. During good monsoon years, the pressure anomalies are negative indicating a fall in SLP during pre-monsoon and monsoon months. The interaction of the marine atmosphere with tropical Indian Ocean and its influence on ISMR continue to be an area of active research.
Resumo:
A parametrization for ice supersaturation is introduced into the ECMWF Integrated Forecast System (IFS), compatible with the cloud scheme that allows partial cloud coverage. It is based on the simple, but often justifiable, diagnostic assumption that the ice nucleation and subsequent depositional growth time-scales are short compared to the model time step, thus supersaturation is only permitted in the clear-sky portion of the grid cell. Results from model integrations using the new scheme are presented, which is demonstrated to increase upper-tropospheric humidity, decrease high-level cloud cover and, to a much lesser extent, cloud ice amounts, all as expected from simple arguments. Evaluation of the relative distribution of supersaturated humidity amounts shows good agreement with the observed climatology derived from in situ aircraft observations. With the new scheme, the global distribution of frequency of occurrence of supersaturated regions compares well with remotely sensed microwave limb sounder (MLS) data, with the most marked errors of underprediction occurring in regions where the model is known to underpredict deep convection. Finally, it is also demonstrated that the new scheme leads to improved predictions of permanent contrail cloud over southern England, which indirectly implies upper-tropospheric humidity fields are better represented for this region.
Resumo:
Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.
Resumo:
In the Radiative Atmospheric Divergence Using ARM Mobile Facility GERB and AMMA Stations (RADAGAST) project we calculate the divergence of radiative flux across the atmosphere by comparing fluxes measured at each end of an atmospheric column above Niamey, in the African Sahel region. The combination of broadband flux measurements from geostationary orbit and the deployment for over 12 months of a comprehensive suite of active and passive instrumentation at the surface eliminates a number of sampling issues that could otherwise affect divergence calculations of this sort. However, one sampling issue that challenges the project is the fact that the surface flux data are essentially measurements made at a point, while the top-of-atmosphere values are taken over a solid angle that corresponds to an area at the surface of some 2500 km2. Variability of cloud cover and aerosol loading in the atmosphere mean that the downwelling fluxes, even when averaged over a day, will not be an exact match to the area-averaged value over that larger area, although we might expect that it is an unbiased estimate thereof. The heterogeneity of the surface, for example, fixed variations in albedo, further means that there is a likely systematic difference in the corresponding upwelling fluxes. In this paper we characterize and quantify this spatial sampling problem. We bound the root-mean-square error in the downwelling fluxes by exploiting a second set of surface flux measurements from a site that was run in parallel with the main deployment. The differences in the two sets of fluxes lead us to an upper bound to the sampling uncertainty, and their correlation leads to another which is probably optimistic as it requires certain other conditions to be met. For the upwelling fluxes we use data products from a number of satellite instruments to characterize the relevant heterogeneities and so estimate the systematic effects that arise from the flux measurements having to be taken at a single point. The sampling uncertainties vary with the season, being higher during the monsoon period. We find that the sampling errors for the daily average flux are small for the shortwave irradiance, generally less than 5 W m−2, under relatively clear skies, but these increase to about 10 W m−2 during the monsoon. For the upwelling fluxes, again taking daily averages, systematic errors are of order 10 W m−2 as a result of albedo variability. The uncertainty on the longwave component of the surface radiation budget is smaller than that on the shortwave component, in all conditions, but a bias of 4 W m−2 is calculated to exist in the surface leaving longwave flux.
Resumo:
Key climate feedbacks due to water vapor and clouds rest largely on how relative humidity R changes in a warmer climate, yet this has not been extensively analyzed in models. General circulation models (GCMs) from the CMIP3 archive and several higher resolution atmospheric GCMs examined here generally predict a characteristic pattern of R trend with global temperature that has been reported previously in individual models, including increase around the tropopause, decrease in the tropical upper troposphere, and decrease in midlatitudes. This pattern is very similar to that previously reported for cloud cover in the same GCMs, confirming the role of R in controlling changes in simulated cloud. Comparing different models, the trend in each part of the troposphere is approximately proportional to the upward and/or poleward gradient of R in the present climate. While this suggests that the changes simply reflect a shift of the R pattern upward with the tropopause and poleward with the zonal jets, the drying trend in the subtropics is roughly three times too large to be attributable to shifts of subtropical features, and the subtropical R minima deepen in most models. R trends are correlated with horizontal model resolution, especially outside the tropics, where they show signs of convergence and latitudinal gradients become close to available observations for GCM resolutions near T85 and higher. We argue that much of the systematic change in R can be explained by the local specific humidity having been set (by condensation) in remote regions with different temperature changes, hence the gradients and trends each depend on a model’s ability to resolve moisture transport. Finally, subtropical drying trends predicted from the warming alone fall well short of those observed in recent decades. While this discrepancy supports previous reports of GCMs underestimating Hadley Cell expansion, our results imply that shifts alone are not a sufficient interpretation of changes.
Resumo:
Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.