47 resultados para Clostridia
Efeito do uso de diferentes inoculantes microbianos à fresco e liofilizados sobre a silagem de sorgo
Resumo:
Na conservação de alimentos para animais, os inoculantes microbianos são empregados na busca da melhoria do padrão de fermentação de silagens, por meio do estímulo ao desenvolvimento populacional dos microrganismos benéficos deste processo conservativo, como acontece para as bactérias produtoras de ácido lático, em detrimento a inibição dos microrganismos indesejáveis, tais como leveduras e clostrídios. O estudo proposto avaliou o efeito do uso de diferentes inoculantes microbianos à fresco e liofilizados utilizando a cultura do sorgo [Sorghum bicolor (L.) Moench], como matéria-prima para ensilagem, a fim de indicar a possibilidade do emprego de inoculantes microbianos desenvolvidos no nosso país. Foram realizados dois experimentos, em um mesmo silo, Experimento 1 (tratamentos com inoculantes liofilizados, na região superior do silo) e Experimento 2 (tratamentos com inoculantes à fresco, na região inferior do silo), com cinco tratamentos e três repetições por silo, sendo os tratamentos caracterizados como controle (sem inoculante), inoculante microbiano comercial (IC) e distintos inoculantes confeccionados à partir de bactérias láticas isoladas da planta de sorgo: Lactobacillus plantarum, Lactobacillus paracasei e Lactobacillus rhamnosus. Quando da ensilagem, foram utilizados três silos experimentais de madeira, que foram abertos em distintos períodos, ou seja, 1, 3 e 28 dias após a ensilagem. Foi utilizado o delineamento experimental em parcelas subdivididas no tempo, no qual os três períodos de abertura foram às parcelas e os cinco tratamentos as subparcelas, em delineamento inteiramente casualizado. No experimento 1, os teores de fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA) sofreram efeito dos inoculantes microbianos no 3º e 28º dia de abertura dos silos, obtendo menores valores nos tratamentos IC e LPP (L. plantarum + L. paracasei. No experimento 2, os teores de FDN, apresentaram efeito no 28º dia de abertura do silo, demonstrando que os tratamentos IC e LPP diferiram entre si, sendo estatisticamente iguais aos demais. A combinação dos isolados microbianos liofilizados de L. plantarum e L. paracasei mostrou potencial para uso prático, pois foi tão efetivo quanto o tratamento IC.
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Collective food services have been increasing worldwide, and the self-service restaurant has been the current preference by consumers. Considering the importance of hygienic quality of food, the microbiological composition of ready-to-eat food was assessed. In the second semester of 2008, 20 samples of meals, mainly meat-based foods, were collected from different self-service restaurants in Araçatuba city, SP. Bacteriological analyses were performed following the conventional methodologies, and the results were compared with the standards established by the effective Brazilian legislation. Coliforms at 35ºC were detected in 90% of analyzed samples. Coliforms at 45°C were found in 55% of the samples and, among these, in 63.63%, the occurrence of Escherichia coli was confirmed. Coagulase-positive staphylococci were detected in 10% of samples and no sample showed Salmonella spp. or Bacillus cereus contamination. Sulfite reducing clostridia at 42o C were not investigated in this study. These findings indicate the need for a rigorous approach for improving the sanitary conditions during preparation and presentation of ready-to-eat food, as the consumption of contaminated products represents a potential risk to public health.
Resumo:
The objective of this study was to investigate the effect of fermentation with Lactobacillus acidophilus CRL 1014 on the physicochemical, microbiological and sensory characteristics of a hamburger product like processed with chicken meat and okara flour, with reduction of curing salts. A mixture of ingredients containing 90% chicken meat and 10% okara flour was subjected to the following treatments: F1: fermented with Lactobacillus acidophilus; F2:75 mg nitrite/kg and fermented with Lactobacillus acidophilus; F3: 150 mg nitrite/kg and unfermented. The quality of the “hamburgers” was assessed by physical and chemical analysis (pH, cooking yield and shrinkage), chemical composition, microbiological tests (Salmonella spp., count of sulphite-reducing clostridia, staphylococos coagulase-positive, total coliforms and Escherichia coli) and sensory analysis (sensory acceptance and purchase intent). During the first six days of fermentation, there was a decrease in pH from approximately 6.33 to 5.10. All the samples showed the same chemical composition (p < 0.05). The fermentation process was observed to inhibit the multiplication of microorganisms of several groups: coagulasepositive staphylococci, sulphite-reducing clostridia, Salmonella spp. and E. coli. The different “hamburgers” formulations showed high scores for all the sensory attributes evaluated, without differing from each other (p < 0.05). The results showed that the use of L. acidophilus CRL 1014 enabled the production of a safe product, with good physicochemical and sensory characteristics, in the absence of curing salts.
Resumo:
Clostridia are uncommon causes of pleuropneumonia in wildlife In human and domestic animals,different hemorrhagic pneumonia with involvement of the pleura. In livestock, most cases are associated with sudden changes of diet, iatrogenic lesionscaused by invasive procedures such as thoracente thoracotomy, or traumatic percutaneous introduction of the microorganism.The clinical course of pleuropneumonia by clostridia infections may be very variable, although usually are associated with hyperacute or acute course and high mortality. The pr necrotizing pneumonia and sepsis caused by hyperacute fatal course, highlighting clinical, epidemiological, microbiological, and histopathological aspects.
Resumo:
This study correlated the composition of the spoilage bacterial flora with the main gaseous and volatile organic compounds (VOCs) found in the package headspace of spoiled, chilled, vacuum-packed meat. Fifteen chilled, vacuum-packed beef samples, suffering from blown pack spoilage, were studied using 16S rRNA clone sequencing. More than 50% of the bacteria were identified as lactic acid bacteria (LAB), followed by clostridia and enterobacteria. Fifty-one volatile compounds were detected in the spoiled samples. Although the major spoilage compounds were identified as alcohols and aldehydes, CO2 was identified as the major gas in the spoiled samples by headspace technique. Different species of bacteria contribute to different volatile compounds during meat spoilage. LAB played an important role in blown pack deterioration of the Brazilian beef studied.
Resumo:
Today’s pet food industry is growing rapidly, with pet owners demanding high-quality diets for their pets. The primary role of diet is to provide enough nutrients to meet metabolic requirements, while giving the consumer a feeling of well-being. Diet nutrient composition and digestibility are of crucial importance for health and well being of animals. A recent strategy to improve the quality of food is the use of “nutraceuticals” or “Functional foods”. At the moment, probiotics and prebiotics are among the most studied and frequently used functional food compounds in pet foods. The present thesis reported results from three different studies. The first study aimed to develop a simple laboratory method to predict pet foods digestibility. The developed method was based on the two-step multi-enzymatic incubation assay described by Vervaeke et al. (1989), with some modification in order to better represent the digestive physiology of dogs. A trial was then conducted to compare in vivo digestibility of pet-foods and in vitro digestibility using the newly developed method. Correlation coefficients showed a close correlation between digestibility data of total dry matter and crude protein obtained with in vivo and in vitro methods (0.9976 and 0.9957, respectively). Ether extract presented a lower correlation coefficient, although close to 1 (0.9098). Based on the present results, the new method could be considered as an alternative system of evaluation of dog foods digestibility, reducing the need for using experimental animals in digestibility trials. The second parte of the study aimed to isolate from dog faeces a Lactobacillus strain capable of exert a probiotic effect on dog intestinal microflora. A L. animalis strain was isolated from the faeces of 17 adult healthy dogs..The isolated strain was first studied in vitro when it was added to a canine faecal inoculum (at a final concentration of 6 Log CFU/mL) that was incubated in anaerobic serum bottles and syringes which simulated the large intestine of dogs. Samples of fermentation fluid were collected at 0, 4, 8, and 24 hours for analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms, clostridia). Consequently, the L. animalis strain was fed to nine dogs having lactobacilli counts lower than 4.5 Log CFU per g of faeces. The study indicated that the L animalis strain was able to survive gastrointestinal passage and transitorily colonize the dog intestine. Both in vitro and in vivo results showed that the L. animalis strain positively influenced composition and metabolism of the intestinal microflora of dogs. The third trail investigated in vitro the effects of several non-digestible oligosaccharides (NDO) on dog intestinal microflora composition and metabolism. Substrates were fermented using a canine faecal inoculum that was incubated in anaerobic serum bottles and syringes. Substrates were added at the final concentration of 1g/L (inulin, FOS, pectin, lactitol, gluconic acid) or 4g/L (chicory). Samples of fermentation fluid were collected at 0, 6, and 24 hours for analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms). Gas production was measured throughout the 24 h of the study. Among the tested NDO lactitol showed the best prebiotic properties. In fact, it reduced coliforms and increased lactobacilli counts, enhanced microbial fermentation and promoted the production of SCFA while decreasing BCFA. All the substrates that were investigated showed one or more positive effects on dog faecal microflora metabolism or composition. Further studies (in particular in vivo studies with dogs) will be needed to confirm the prebiotic properties of lactitol and evaluate its optimal level of inclusion in the diet.
Resumo:
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.
Resumo:
Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.
Resumo:
Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Resumo:
Clostridium cellulovorans uses not only cellulose but also xylan, mannan, pectin, and several other carbon sources for its growth and produces an extracellular multienzyme complex called the cellulosome, which is involved in plant cell wall degradation. Here we report a gene for a cellulosomal subunit, pectate lyase A (PelA), lying downstream of the engY gene, which codes for cellulosomal enzyme EngY. pelA is composed of an ORF of 2,742 bp and encodes a protein of 914 aa with a molecular weight of 94,458. The amino acid sequence derived from pelA revealed a multidomain structure, i.e., an N-terminal domain partially homologous to the C terminus of PelB of Erwinia chrysanthemi belonging to family 1 of pectate lyases, a putative cellulose-binding domain, a catalytic domain homologous to PelL and PelX of E. chrysanthemi that belongs to family 4 of pectate lyases, and a duplicated sequence (or dockerin) at the C terminus that is highly conserved in enzymatic subunits of the C. cellulovorans cellulosome. The recombinant truncated enzyme cleaved polygalacturonic acid to digalacturonic acid (G2) and trigalacturonic acid (G3) but did not act on G2 and G3. There have been no reports available to date on pectate lyase genes from Clostridia.
Resumo:
An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.
Resumo:
Clostridium difficile is a bacterial healthcare-associated infection, which houseflies Musca domestica may transfer due to their synanthropic nature. The aims of this thesis were to determine the ability of M. domestica to transfer C. difficile mechanically and to collect and identify flying insects in UK hospitals and classify any associated bacteria. M. domestica exposed to independent suspensions of vegetative cells and spores of C. difficile were able to mechanically transfer the bacteria on to agar for up to 4 hours following exposure. C. difficile could be recovered from fly excreta for 96hrs and was isolated from the M. domestica alimentary canal. Also confirmed was the carriage of C. difficile by M. domestica larvae, although it was not retained in the pupae or in the adults that subsequently developed. Flying insects were collected from ultra-violet light flytraps in hospitals. Flies (order Diptera) were the most commonly identified. Chironomidae were the most common flies, Calliphora vicina were the most common synanthropic fly and ‘drain flies’ were surprisingly numerous and represent an emerging problem in hospitals. External washings and macerates of flying insects were prepared and inoculated onto a variety of agars and following incubation bacterial colonies identified by biochemical tests. A variety of flying insects, including synanthropic flies (e.g. M. domestica and C. vicina) collected from UK hospitals harboured pathogenic bacteria of different species. Enterobacteriaceae were the group of bacteria most commonly isolated, followed by Bacillus spp, Staphylococci, Clostridia, Streptococci and Micrococcus spp. This study highlights the potential for M. domestica to contribute to environmental persistence and spread of C. difficile in hospitals. Also illustrated is the potential for flying insects to contribute to environmental persistence and spread of other pathogenic bacteria in hospitals and therefore the need to implement pest control as part of infection control strategies.
Resumo:
As discussed in Part I, a large accumulation of mammalian faeces at the mire site in the upper Guil Valley near Mt. Viso, dated to 2168cal 14C yr., provides the first evidence of the passage of substantial but indeterminate numbers of mammals within the time frame of the Punic invasion of Italia. Specialized organic biomarkers bound up in a highly convoluted and bioturbated bed constitute an unusual anomaly in a histosol comprised of fibric and hemist horizons that are usually expected to display horizontal bedding. The presence of deoxycholic acid and ethylcoprostanol derived from faecal matter, coupled with high relative numbers of Clostridia 16S rRNA genes, suggests a substantial accumulation of mammalian faeces at the site over 2000years ago. The results reported here constitute the first chemical and biological evidence of the passage of large numbers of mammals, possibly indicating the route of the Hannibalic army at this time. Combined with the geological analysis reported in Part I, these data provide a background supporting the need for further historical archaeological exploration in this area.