864 resultados para Climate Change|Biological oceanography


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic farming has increased in popularity in recent years, primarily as a response to the perceived health and conservation benefits. While it is likely that conventional farming will be able to respond rapidly to variations in pest numbers and distribution resulting from climatic change, it is not clear if the same is true for organic farming. Few studies have looked at the responses of biological control organisms to climate change. Here, I review the direct and indirect eects of changes in temperature, atmospheric carbon dioxide and other climatic factors on the predators, parasitoids and pathogens of pest insects in temperate agriculture. Finally, I consider what research is needed to manage the anticipated change in pest insect dynamics and distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate and magnitude of predicted climate change require that we urgently mitigate emissions or sequester carbon on a substantial scale in order to avoid runaway climate change. Geo- and bioengineering solutions are increasingly proposed as viable and practical strategies for tackling global warming. Biotechnology companies are already developing transgenic “super carbon-absorbing” trees, which are sold as a cost-effective and relatively low-risk means of sequestering carbon. The question posed in this article is, Do super carbon trees provide real benefits or are they merely a fanciful illusion? It remains unclear whether growing these trees makes sense in terms of the carbon cost of production and the actual storage of carbon. In particular, it is widely acknowledged that “carbon-eating” trees fail to sequester as much carbon as they oxidize and return to the atmosphere; moreover, there are concerns about the biodiversity impacts of large-scale monoculture plantations. The potential social and ecological risks and opportunities presented by such controversial solutions warrant a societal dialogue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerated climate change affects components of complex biological interactions differentially, often causing changes that are difficult to predict. Crop yield and quality are affected by climate change directly, and indirectly, through diseases that themselves will change but remain important. These effects are difficult to dissect and model as their mechanistic bases are generally poorly understood. Nevertheless, a combination of integrated modelling from different disciplines and multi-factorial experimentation will advance our understanding and prioritisation of the challenges. Food security brings in additional socio-economic, geographical and political factors. Enhancing resilience to the effects of climate change is important for all these systems and functional diversity is one of the most effective targets for improved sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth’s climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate changes during the Cenozoic (65.5–0 Ma) caused major biological range shifts and extinctions. In northern Europe, for example, a pattern of few endemics and the dominance of wide-ranging species is thought to have been determined by the Pleistocene (2.59–0.01 Ma) glaciations. This study, in contrast, reveals an ancient subsurface fauna endemic to Britain and Ireland. Using a Bayesian phylogenetic approach, we found that two species of stygobitic invertebrates (genus Niphargus) have not only survived the entire Pleistocene in refugia but have persisted for at least 19.5 million years. Other Niphargus species form distinct cryptic taxa that diverged from their nearest continental relative between 5.6 and 1.0 Ma. The study also reveals an unusual biogeographical pattern in the Niphargus genus. It originated in north-west Europe approximately 87 Ma and underwent a gradual range expansion. Phylogenetic diversity and species age are highest in north-west Europe, suggesting resilience to extreme climate change and strongly contrasting the patterns seen in surface fauna. However, species diversity is highest in south-east Europe, indicating that once the genus spread to these areas (approximately 25 Ma), geomorphological and climatic conditions enabled much higher diversification. Our study highlights that groundwater ecosystems provide an important contribution to biodiversity and offers insight into the interactions between biological and climatic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south-eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change poses special challenges for Caribbean decision makers related to the uncertainties inherent in future climate projections and the complex linkages between climate change, physical and biological systems, and socioeconomic sectors. At present, however, the Caribbean subregion lacks the adaptive capacity needed to address these challenges. The present report assesses the economic and social impacts of climate change on the coastal and marine sector in the Caribbean until 2050. It aims both to provide Caribbean decision makers with cutting edge information on the vulnerability to climate change of the subregion, and to facilitate the development of adaptation strategies informed by both local experience and expert knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caribbean policymakers are faced with special challenges from climate change and these are related to the uncertainties inherent in future climate projections and the complex linkages among climate change, physical and biological systems and socioeconomic sectors. The impacts of climate change threaten development in the Caribbean and may well erode previous gains in development as evidenced by the increased incidence of climate migrants internationally. This brief which is based on a recent study conducted by the Economic Commission for Latin America and the Caribbean (LC/CAR/L.395)1 provides a synthesis of the assessment of the economic and social impacts of climate change on the coastal and marine sector in the Caribbean which were undertaken. It provides Caribbean policymakers with cutting-edge information on the region’s vulnerability and encourages the development of adaptation strategies informed by both local experience and expert knowledge. It proceeds from an acknowledgement that the unique combination of natural resources, ecosystems, economic activities, and human population settlements of the Caribbean will not be immune to the impacts of climate change, and local communities, countries and the subregion as a whole need to plan for, and adapt to, these effects. Climate and extreme weather hazards related to the coastal and marine sector encompass the distinct but related factors of sea level rise, increasing coastal water temperatures, tropical storms and hurricanes. Potential vulnerabilities for coastal zones include increased shoreline erosion leading to alteration of the coastline, loss of coastal wetlands, and changes in the abundance and diversity of fish and other marine populations. The study examines four key themes in the analysis: climate, vulnerability, economic and social costs associated with climate change impacts, and adaptive measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty reduction, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of the British Virgin Islands (BVI). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations of possible adaptation strategies and costs and benefits of adaptation. A multi-pronged approach is employed in valuing the marine and coastal sector. Direct use and indirect use values are estimated. The amount of economic activity an ecosystem service generates in the local economy underpins estimation of direct use values. Tourism and fisheries are valued using the framework developed by the World Resources Institute. Biodiversity is valued in terms of the ecological functions it provides, such as climate regulation, shoreline protection, water supply erosion control and sediment retention, and biological control, among others. Estimates of future losses to the coastal zone from climate change are determined by considering: (1) the effect of sea level rise on coastal lands; and (2) the effect of a rise in sea surface temperature (SST) on coastal waters. Discount rates of 1%, 2% and 4% are employed to analyse all loss estimates in present value terms. The overall value for the coastal and marine sector is USD $1,606 million (mn). This is almost 2% larger than BVI’s 2008 GDP. Tourism and recreation comprise almost two-thirds of the value of the sector. By 2100, the effects of climate change on coastal lands are projected to be $3,988.6 mn, and $2,832.9 mn under the A2 and B2 scenarios respectively. In present value terms, if A2 occurs, losses range from $108.1-$1,596.8 mn and if B2 occurs, losses range from $74.1-$1,094.1 mn, depending on the discount rate used. Estimated costs of a rise in SST in 2050 indicate that they vary between $1,178.0 and $1,884.8 mn. Assuming a discount rate of 4%, losses range from $226.6 mn for the B2 scenario to $363.0 mn for the A2 scenario. If a discount rate of 1% is assumed, estimated losses are much greater, ranging from $775.6-$1,241.0 mn. Factoring in projected climate change impacts, the net value of the coastal and marine sector suggests that the costs of climate change significantly reduce the value of the sector, particularly under the A2 and B2 climate change scenarios for discount rates of 1% and 2%. In contrast, the sector has a large, positive, though declining trajectory, for all years when a 4% discount rate is employed. Since the BVI emits minimal greenhouse gases, but will be greatly affected by climate change, the report focuses on adaptation as opposed to mitigation strategies. The options shortlisted are: (1) enhancing monitoring of all coastal waters to provide early warning alerts of bleaching and other marine events; (2) introducing artificial reefs or fish-aggregating devices; (3) introducing alternative tourist attractions; (4) providing retraining for displaced tourism workers; and (5) revising policies related to financing national tourism offices to accommodate the new climatic realities. All adaptation options considered are quite justifiable in national terms; each had benefit-cost ratios greater than 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mediterranean Sea is expected to react faster to global change compared to the ocean and is already showing more pronounced warming and acidification rates. A study performed along the Italian western coast showed that porosity of the skeleton increases with temperature in the zooxanthellate (i.e. symbiotic with unicellular algae named zooxanthellae) solitary scleractinian Balanophyllia europaea while it does not vary with temperature in the solitary non-zooxanthellate Leptopsammia pruvoti. These results were confirmed by another study that indicated that the increase in porosity was accompanied by an increase of the fraction of the largest pores in the pore-space, perhaps due to an inhibition of the photosynthetic process at elevated temperatures, causing an attenuation of calcification. B. europaea, L. pruvoti and the colonial non-zooxanthellate Astroides calycularis, transplanted along a natural pH gradient, showed that high temperature exacerbated the negative effect of lowered pH on their mortality rates. The growth of the zooxanthellate species did not react to reduced pH, while the growth of the two non-zooxanthellate species was negatively affected. Reduced abundance of naturally occurring B. europaea, a mollusk, a calcifying and a non-calcifying macroalgae were observed along the gradient while no variation was seen in the abundance of a calcifying green alga. With decreasing pH, the mineralogy of the coral and mollusk did not change, while the two calcifying algae decreased the content of aragonite in favor of the less soluble calcium sulphates and whewellite (calcium oxalate), possibly as a mechanism of phenotypic plasticity. Increased values of porosity and macroporosity with CO2 were observed in B. europaea specimens, indicating reduces the resistance of its skeletons to mechanical stresses with increasing acidity. These findings, added to the negative effect of temperature on various biological parameters, generate concern on the sensitivity of this zooxanthellate species to the envisaged global climate change scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in metabolic scaling in animals, the relationship between metabolic rate ( R) and body mass ( M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural ecosystems contain many individuals and species interacting with each other and with their abiotic environment. Such systems can be expected to exhibit complex dynamics in which small perturbations can be amplified to cause large changes. Here, we document the reorganization of an arid ecosystem that has occurred since the late 1970s. The density of woody shrubs increased 3-fold. Several previously common animal species went locally extinct, while other previously rare species increased. While these changes are symptomatic of desertification, they were not caused by livestock grazing or drought, the principal causes of historical desertification. The changes apparently were caused by a shift in regional climate: since 1977 winter precipitation throughout the region was substantially higher than average for this century. These changes illustrate the kinds of large, unexpected responses of complex natural ecosystems that can occur in response to both natural perturbations and human activities.