975 resultados para Clay roof tiles
Resumo:
High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.
Resumo:
The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]
Resumo:
This study evaluated hydrogen production in an anaerobic fluidized bed reactor (AFBR) fed with glucose-based synthetic wastewater. Particles of expanded clay (2.8-3.35 mm) were used as a support material for biomass immobilization. The reactor was operated with hydraulic retention times (HRT) ranging from 8 to 1 h. The hydrogen yield production increased from 1.41 to 2.49 mol H(2) Mol(-1) glucose as HRT decreased from 8 to 2 h. However, when HRT was 1 h, there was a slight decrease to 2.41 mol H(2) Mol(-1) glucose. The biogas produced was composed of H(2) and CO(2), and the H(2) content increased from 8% to 35% as HRT decreased. The major soluble metabolites during H(2) fermentation were acetic acid (HAc) and butyric acid (HBu), accounting for 36.1-53.3% and 37.7-44.9% of total soluble metabolites, respectively. Overall, the results demonstrate the potential of using expanded clay as support material for hydrogen production in AFBRs. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Electric arc furnace steel dust is a by-product of the steelmaking process and contains high amounts of the iron and zinc and significant amounts of lead, chromium, and cadmium. Metal recycling however, is not always economically feasible, especially due to the complex mineralogical composition of this material. In this study an application of this material is presented. Ceramics were produced with clay and variable amounts of steel dust. The bulk material was fired between 800 and 1100 degrees C. The influence of the composition and the processing temperature on the mechanical strength, linear shrinkage, water absorption, apparent density and bending strength and metal leaching of the ceramic samples was investigated. A blend of clay with up to 20% dust yielded ceramics with limited metal contamination risk and may thus be used for structural ceramics production. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polymer-clay nanocomposites are materials with many interesting structures, properties, and potential applications. Microstructural evaluation of a nanocomposite is not an easy task, as clay may form hierarchical structures which may look different when observed at various magnifications under a microscope, and also as the concepts of ""intercalation"" and ""exfoliation"" are not self-sufficient to describe its morphology. In this work polymer-clay nanocomposites of polystyrene and two styrene-containing block copolymers (styrene-butadiene-styrene and styrene-ethylene/butylene-styrene) were prepared using three different techniques. Clay dispersion was evaluated by a recently developed microscopy image analysis procedure, combining the analysis of optical and transmission electron micrographs, and the characterization was complemented by X-ray diffraction and rheological measurements. The results showed better clay dispersion for both block copolymers nanocomposites, mainly due to their molecular architectures. Moreover, the techniques which showed the best results involved mixing the materials in a solvent medium. POLYM. ENG. SCI., 50:257-267, 2010. (C) 2009 Society of Plastics Engineers
Resumo:
In this work, the rheological behavior of block copolymers with different morphologies (lamellar, cylindrical, spherical, and disordered) and their clay-containing nanocomposites was studied using small amplitude oscillatory shear. The copolymers studied were one asymmetric starblock styrene-butadiene-styrene copolymer and four styrene-ethylene/butylenes-styrene copolymers with different molecular architectures, one of them being modified with maleic anhydride. The nanocomposites of those copolymers were prepared by adding organophilic clay using three different preparation techniques: melt mixing, solution casting, and a hybrid melt mixing-solution technique. The nanocomposites were characterized by X-ray diffraction and transmission electron microscopy, and their viscoelastic properties were evaluated and compared to the ones of the pure copolymers. The influence of copolymer morphology and presence of clay on the storage modulus (G`) curves was studied by the evaluation of the changes in the low frequency slope of log G` x log omega (omega: frequency) curves upon variation of temperature and clay addition. This slope may be related to the degree of liquid- or solid-like behavior of a material. It was observed that at temperatures corresponding to the ordered state, the rheological behavior of the nanocomposites depended mainly on the viscoelasticity of each type of ordered phase and the variation of the slope due to the addition of clay was small. For temperatures corresponding to the disordered state, however, the rheological behavior of the copolymer nanocomposites was dictated mostly by the degree of clay dispersion: When the clay was well dispersed, a strong solid-like behavior corresponding to large G` slope variations was observed.
Resumo:
Commercial bentonite (BFN) and organoclay (WS35), as well as iron oxide/clay composite (Mag_BFN) and iron/oxide organoclay composite (Mag_S35) were prepared for toluene and naphthalene sorption. Mag_BFN and Mag_S35 were obtained, respectively, by the precipitation of iron oxide hydrates onto sodium BFN and S35 clay particles. The materials were characterized by powder X-ray diffraction (XRD), X-ray Fluorescence (XRF), and TG and DTA. From XRF results and TG data on calcined mass basis, a quantitative method was developed to estimate the iron compound contents of the composites, as well as the organic matter content present in WS35 and Mag_S35.
Resumo:
Timber battened concave roof and supporting structure over outdoor room area.
Resumo:
View to roof of house from exterior.
Resumo:
View of carved king post.
Resumo:
View to underside of roof with steel beam and insulation.
Resumo:
Detail view of corrugated steel roofing, polycarbonate sheeting, plywood cladding, eaves gutter and downpipe.