982 resultados para Classificação de imagens
Resumo:
Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.
Resumo:
Nesta dissertação, foi utilizada a técnica SIFT (Scale Invariant Feature Transform) para o reconhecimento de imagens da área dos olhos (região periorbital). Foi implementada uma classificação das imagens em subgrupos internos ao banco de dados, utilizando-se das informações estatísticas provenientes dos padrões invariantes produzidos pela técnica SIFT. Procedeu-se a uma busca categorizada pelo banco de dados, ao invés da procura de um determinado padrão apresentado, através da comparação deste com cada padrão presente no banco de dados. A tais padrões foi aplicada uma abordagem estatística, através da geração da matriz de covariâncias dos padrões gerados, sendo esta utilizada para a categorização, tendo por base uma rede neural híbrida. A rede neural classifica e categoriza o banco de dados de imagens, criando uma topologia de busca. Foram obtidos resultados corretos de classificação de 76,3% pela rede neural híbrida, sendo que um algoritmo auxiliar determina uma hierarquia de busca, onde, ocorrendo uma errônea classificação, a busca segue em grupos de pesquisas mais prováveis.
Resumo:
Este trabalho apresenta o desenvolvimento de sistemas inteligentes aplicados ao monitoramento de estruturas aeronáuticas abordando dois modelos distintos: o primeiro é a análise e classificação de imagens de ultrassom de estruturas aeronáuticas com objetivo de apoiar decisões em reparo de estruturas aeronáuticas. Foi definido como escopo do trabalho uma seção transversal da asa da aeronave modelo Boeing 707. Após a remoção de material superficial em áreas comprometidas por corrosão, é realizada a medição da espessura ao longo da área da peça. Com base nestas medições, a Engenharia realiza a análise estrutural, observando os limites determinados pelo manual de manutenção e determina a necessidade ou não de reparo. O segundo modelo compreende o método de impedância eletromecânica. É proposto o desenvolvimento de um sistema de monitoramento de baixo custo aplicado em uma barra de alumínio aeronáutico com 10 posições de fixação de porcas e parafusos. O objetivo do sistema é avaliar, a partir das curvas de impedância extraídas do transdutor PZT fixado na barra, sua capacidade de classificar a existência ou não de um dano na estrutura e, em caso de existência do dano, indicar sua localização e seu grau de severidade. Foram utilizados os seguintes classificadores neste trabalho: máquina de vetor de suporte, redes neurais artificiais e K vizinhos mais próximos.
Resumo:
Os SIG Sistemas de Informação Geográfica vêm sendo cada vez mais estudados como ferramentas facilitadoras de análises territoriais com o objetivo de subsidiar a gestão ambiental. A Ilha Grande, que pertence ao município de Angra dos Reis, localiza-se na baía de Ilha Grande no sul do estado do Rio de Janeiro e constitui-se no recorte espacial de análise. Apresenta uma dinâmica ambiental complexa que se sobrepõem principalmente aos usos de proteção ambiental e de atividade turística em uma porção do território em que as normatizações legais são difíceis de serem aplicadas, pois são reflexos de interesses que se manifestam em três esferas do poder a municipal, a estadual e a federal. O objetivo principal desta pesquisa é a realização do processamento digital de imagem para auxiliar a gestão territorial da Ilha Grande. Em foco, a estrada Abraão - Dois Rios, que liga Abraão (local de desembarque dos turistas, principal núcleo da Ilha) a Dois Rios (local de visitação por estudantes e pesquisadores, núcleo que abrigava o presídio, atualmente abriga sede do centro de pesquisa e museu da Universidade do Estado do Rio de Janeiro), ambos protegidos por diferentes categorias de unidades de conservação. A metodologia fundamenta-se no processamento digital de imagem através da segmentação e da classificação supervisionada por pixel e por região. O processamento deu-se a partir da segmentação (divisão de uma imagem digital em múltiplas regiões ou objetos, para simplificar e/ou mudar a representação de uma imagem) e dos processos de classificações de imagem, com a utilização de classificação por pixel e classificação por regiões (com a utilização do algoritmo Bhattacharya). As segmentações e classificações foram processadas no sistema computacional SPRING versão 5.1.7 e têm como objetivo auxiliar na análise de uso da Terra e projetar cenários a partir da identificação dos pontos focais de fragilidade encontrados ao longo da estrada Abraão-Dois Rios, propensos a ocorrências de movimentos de massa e que potencializam o efeito de borda da floresta e os impactos ambientais. A metodologia utilizada baseou-se em análise de campo e comparações de tecnologias de classificação de imagens. Essa estrada eixo de ligação entre os dois núcleos tem significativa importância na história da Ilha, nela circulam veículos, pesados e leves, de serviço, pedestres e turistas. Como resultados da presente foram gerados os mapas de classificação por pixel, os mapas de classificação por região, o mapa fuzzy com a intersecção dos mapas de classificação supervisionada por região e os mapas com os locais coletados em campo onde são verificadas ocorrências de movimentos de massa nas imagens ALOS, 2000, IKONOS, 2003 e ortofotografias, 2006. Esses mapas buscam servir de apoio à tomada de decisões por parte dos órgãos locais responsáveis.
Resumo:
O objetivo desta dissertação foi criar uma nova abordagem para identificar de maneira automática feições do tipo edificação em uma imagem digital. Tal identificação seria de interesse de órgãos públicos que lidam com planejamento urbano para fins de controle da ocupação humana irregular. A abordagem criada utilizou agentes de software especialistas para proceder com o processamento da segmentação e reconhecimento de feições na imagem digital. Os agentes foram programados para tratar uma imagem colorida com o padrão Red, Green e Blue (RGB). A criação desta nova abordagem teve como motivação o fato das atuais técnicas existentes de segmentação e classificação de imagens dependerem sobremaneira dos seus usuários. Em outras palavras, pretendeu-se com a abordagem em questão permitir que usuários menos técnicos pudessem interagir com um sistema classificador, sem a necessidade de profundos conhecimentos de processamento digital de imagem. Uma ferramenta protótipo foi desenvolvida para testar essa abordagem, que emprega de forma inusitada, agentes inteligentes, com testes feitos em recortes de ortofotos digitais do Município de Angra dos Reis (RJ).
Resumo:
O conhecimento do uso atual e cobertura do solo é imprescindível em qualquer projeto de caracterização e monitoramento ambientais, permitindo demarcar os diferentes usos da terra e vegetação, bem como subsidiar o planejamento e gestão ambientais. O presente trabalho abrange a totalidade do Estado do Rio de Janeiro, compreendido entre os meridianos 410 e 450 de longitude Oeste e os paralelos 200 30? e 230 30? de latitude Sul, estendendo-se por aproximadamente 44.000 km2. Tem como objetivo inventariar e mapear o estado atual da ocupação dos solos, distinguindo e quantificando os principais tipos de uso do solo e de cobertura vegetal, apresentados numa escala generalizada de 1:250.000. Para tal, fez-se um mapeamento preliminar com base nos padrões espectrais das imagens de satélite Landsat ETM7+, cedidas pela EMATER-RJ, utilizando-se de diferentes algoritmos de classificação espectral. Durante a elaboração da versão final do Mapa de Uso Atual e Cobertura Vegetal dos Solos do Estado do Rio de Janeiro, foram viagens de verificação in situ a fim de esclarecer dúvidas e subsidiar ajustes e modificações posteriores. O trabalho de pré-processamento, interpretação e classificação das imagens para a produção e edição final do Mapa de Uso Atual e Cobertura Vegetal realizou-se no período de março de 2002 a fevereiro de 2003, pelas equipes técnicas da CPRM (Serviço Geológico Brasileiro), Divisão de Geoprocessamento - DIGEOP, Departamento de Informações Institucionais (DEINF) e o Laboratório de Geoinformação da Embrapa Solos. Foram identificadas e mapeadas 13 grandes classes de uso e ocupação do solo, algumas delas subdivididas em tipos, assim classificadas e distribuídas: 1 ? Mata Atlântica (Remanescente/Secundária e Ciliar); 2 ? Mangue (Mangue e Mangue Degradado); 3 ? Restinga; 4 - Pecuária (Pastagem Plantada e Campo / Passtagem em Zona Úmida); 5 ? Agricultura; 6 ? Reflorestamento; 7 ? Afloramento de Rocha; 8 ? Solo Exposto; 9 ? Corpo d?Água; 10 ? Salina; 11 ? Extração de Areia / Mineração; 12 ? Praia e Duna; 13 ? Área Urbana.
Resumo:
Os satélites para sensoriamento remoto atualmente dispoívies à comunidade científica possuem diferenies resoluções espaciais, por exemplo: SPOT 20 e 10 metros, LANDSAT-TM 30 metros e NOA-AVHRR 1100 metros. Essa resolução frequentemente não é grande o suficiente para um grande número de aplicações que necessitam de uma percepção da cena mais detalhada. Muitas vezes, no interior de uma célula de resolução (pixel) mais de uma classe ocorre. Este caso é conhecido como pixel mistura. Na classificação de imagens obtidas por sensoriamento remoto é comum a utilização de metodologias que atribuem somente uma classe a um pixel, como o procedimento clássico da máxima verossimilhança. Esse procedimento resulta frequentemente em uma estimação errônea das áreas ocupadas pelas classes presentes na cena. Em alguns casos, especialmente quando não há uma classe dominante, isto pode ser a fonte de um erro significativo. Desde o início dos anos 70, diferentes metodologias têm sido propostas para o trabalho num nível de subpixel. A grande vantagem do trabalho nesse nível é que um pixel não é necessariamente atribuído a somente uma classe. O pixel tem um grau que o correlaciona a cada classe: de zero(se a classe não ocorre no pixel) até 1 (a classe ocorre no pixel inteiro). Assim, cada pixel tem um vetor associado que estima a proporção de cada classe nele. A metodologia mais comumente utilizada considera a refletância do pixel mistura como uma combinação linear da refletância média de cada classe componente. De acordo com essa visão as refletâncias associadas às classes componentes são consideradas constantes conhecidas i.e., não são variáveis aleatórias. Assim, a proporção de cada classe no pixel é obtida pela resolução de um sistema de equações lineares. Uma outra metodologia é assumir as refletâncias que caracterizam as classes como sendo variáveis aleatórias. Nesta visão, as informações a respeito das distribuições das classes é utilizada. A estimativa das proporções de cada classe é obtida pelo vetor de proporções que maximiza a função de verossimilhança. Mais recentemente, uma visão diferente foi proposta: a utilização da lógica fuzzy. Esta metodologia utiliza o conceito de função de pertinência que é essencial à teoria dos conjuntos fuzzy. Esta função utiliza elementos com natureza estatística ou não para a estimação das proporções. No presente trabalho, duas funções de pertinência foram definidas: a primeira baseada na função densidade probabilidade gaussiana e a segunda baseada diretamente na distância de Mahalanobis. O objetivo deste estudo é avaliar cada uma das metodologias anteriores em termos de acurácia, performance e dados necessários. Para este objetivo, as metodologias foram implementadas computacionalmente e alimentadas com imagens LANDSAT-TM. Para a avaliação da acurácia dos modelos um estudo qualitativo foi executado.
Resumo:
As técnicas de sensoriarnento remoto e geoprocessamento são fundamentais para processamento e integração de dados de mapeamento geológico/geotécnico, principalmente estudos de gerenciamento e planejamento. A área estudada compreende o município de Três Cachoeiras. Litoral Norte do Rio Grande do Sul o qual inclui-se na "Reserva da Biosfera da Mata Atlântica". O município tem st: deparado com problemas de localização de sitios adequados à disposição final dos resíduos sólidos. bem como o assentamento de loteamentos residenciais e industriais, localização de jazidas de extração de material para construção, fontes de abastecimento de água e necessidade de criação de áreas de preservação ambiental. O objetivo deste trabalho foi produzir mapeamentos da área em questão, através da pesquisa geológico-geotécnica desenvolvida com emprego de imagens de satélite e fotografias aéreas, em que as informações foram cruzadas no SIG. Baseado nisto, investigaram-se os aspectos acima mencionados. a partir de uma contribuição geológico/geotécnica ao município, incluindo-se levantamento de campo, fotointerpretação, processamento e classificação de imagens do município de Três Cachoeiras, sendo os dados integrados num sistema de geoprocessamento. Utilizando-se cartas planialtimétricas, fotografias aéreas e imagem de satélite LANDSAT TM5. foram criados planos de informação como o limite da área estudada, a estrutura viária municipal, a delimitação de reservas ecológicas baseadas na legislação ambiental vigente e, por meio do modelo numérico do terreno, a carta de declividade. A fotointerpretação gerou planos de rede de drenagem, litológica. morfoestruturas e formações superficiais. Os dados de campo. sobrepostos às litológicas obtidas por fotointerpretação, produziram a carta litológica. No tratamento das imagem, foram gerados produtos com contraste, operações entre bandas, filtragens e análise de componentes principais, os quais contribuíram parira classificação da imagem e resultando nos planos de rochas/solos e cobertura/uso do solo (carta de uso atual do solo). O cruzamento destas informações permitiu a obtenção da carta de formações superficiais, lidrogeológica que, juntamente com as cartas litológica, declividades e uso atual do solo distribuíram os atributos do meio físico em planos elaborados por novos cruzamentos, que satisfazem o objetivo do estudo, sendo estes planos o produto final, ou seja, cartas de recomendação: a extração de materiais para construção civil; a implantação de obras de infraestrutura; a disposição de resíduos sólidos e loteamentos; geotécnica à agricultura; à implantação de áreas destinadas à preservação ambienta1 e recuperação.
Resumo:
Atualmente, pesquisadores das mais diversas áreas, tais como: Geologia, Física, Cartografia, Oceanografia, entre outras, utilizam imagens de satélite como uma fonte valiosa para a extração de informações sobre a superfície terrestre. Muitas vezes, a análise (classificação) destas imagens é realizada por métodos tradicionais sejam eles supervisionados (como o Método de Máxima Verossimilhança Gaussiana) ou nãosupervisionados (como o Método de Seleção pelo Pico do Histograma). Entretanto, pode-se utilizar as Redes Neurais Artificiais como uma alternativa para o aumento da acurácia em classificações digitais. Neste trabalho, utilizou-se imagens multi-espectrais do satélite LANDSAT 5-TM para a identificação de espécies vegetais (Mata Nativa, Eucalyptus e Acácia) em uma região próxima aos municípios de General Câmara, Santo Amaro e Taquari, no Estado do Rio Grande do Sul, Brasil. Comparou-se qualitativamente e quantitativamente os resultados obtidos pelo método de Máxima Verossimilhança Gaussiana e por uma Rede Neural Artificial Multinível com BackPropagation na classificação da área de estudo. Para tanto, parte desta área foi mapeada através de uma verificação de campo e com o auxílio de classificadores nãosupervisionados (Kohonen, que é uma Rede Neural, e o método de Seleção pelo Pico do Histograma). Com isto, foi possível coletar dois conjuntos de amostras, sendo que um deles foi utilizado para o treinamento dos métodos e o outro (conjunto de reconhecimento) serviu para a avaliação das classificações obtidas. Após o treinamento, parte da área de estudo foi classificada por ambos os métodos. Em seguida, os resultados obtidos foram avaliados através do uso de Tabelas de Contingência, considerando um nível de significância de 5%. Por fim, na maior parte dos testes realizados, a Rede Neural Artificial Multinível com BackPropagation apresentou valores de acurácia superiores ao Método de Máxima Verossimilhança Gaussiana. Assim, com este trabalho observou-se que não há diferença significativa de classificação para as espécies vegetais, ao nível de 5%, para a área de estudo considerada, na época de aquisição da imagem, para o conjunto de reconhecimento.
Resumo:
A elaboração de diagnósticos e a tomada de decisões sobre o meio físico, com a finalidade de estabelecer diretrizes para a ocupação racional do solo, são cada vez mais prementes, especialmente, no que diz respeito ao direcionamento da expansão urbana para áreas mais favoráveis. Da mesma forma, a facilidade de acesso aos parâmetros geotécnicos de uma região constituí um inestimável recurso nas etapas preliminares dos projetos de Engenharia, no planejamento de atividades extrativas e nos programas de preservação ambiental. A cartografia geotécnica, nesse sentido, tem sido um dos instrumentos mais eficientes para a avaliação do meio físico nas últimas décadas. Entretanto, o desenvolvimento de um mapa geotécnico requer a análise de um grande número de informações que precisam ser tratadas e combinadas com rapidez. Esta tese apresenta uma metodologia para a integração de dados, por meio da ferramenta básica geoprocessamento, visando agilizar, na fase de escritório, a elaboração de mapas geotécnicos e a análise de determinados aspectos do meio físico sob o ponto de vista da Geotecnia, bem como suas interações com a mancha urbana existente. A área teste escolhida é o município de Porto Alegre (RS) situado na porção leste do estado do Rio Grande do Sul, à margem esquerda do Lago Guaiba, cuja paisagem é marcada pela diversidade de cenários naturais formados por terrenos de coxilhas, morros, cristas, lagos e planícies. A metodologia envolve a captura, o processamento e a integração de informações provenientes de fontes diversas como mapas temáticos, levantamento aerofotogramétrico, cartas topográficas, fotografias aéreas, imagens de satélite, boletins de sondagens SPT (Standart Penetration Test), dissertações e teses acadêmicas. Para isso, é constituída por nove etapas distintas, que utilizam: a) sistema de digitalização para a conversão de informações analógicas para o meio digital; b) modelagem digital do terreno (MDT) para o modelamento e a identificação do relevo, a determinação de declividades, o mapeamento de áreas com isodeclividades e o cálculo do fator topográfico, esse último objetivando a determinação da suscetibilidade à erosão laminar; c) técnicas de processamento e classificação de imagens orbitais para os mapeamentos das áreas inundáveis e da mancha urbana; d) Sistemas de Informações Geográficas (SIGs) para o processamento e a integração de informações georreferenciadas no computador; e) banco de dados digital para o armazenamento de dados descritivos sobre o meio físico e parâmetros geotécnicos obtidos em laboratório, sondagens e outras formas de investigação in situ. A estimativa das unidades geotécnicas é procedida com base na proposta metodológica para mapeamento geotécnico desenvolvida por Davison Dias (1995), na Universidade Federal do Rio Grande do Sul (UFRGS). Além da elaboração do mapa geotécnico, a metodologia propõe a análise e o cruzamento de vários fatores do meio físico com a mancha urbana existente, ou com uma subárea pertencente à região de estudo, a geração de mapas de aptidão do solo para diferentes usos e a identificação das áreas consideradas de eventos perigosos e de risco geológico. Os principais softwares empregados são o AutoCAD@, o SURFER@, ACESS@ e o IDRISI 2.0@, desenvolvido pela Clark University, USA. Os resultados obtidos a partir da implementação da metodologia demonstraram a importância e a contribuição que a ferramenta básica geoprocessamento pode trazer aos estudos geotécnicos. Os diferentes sistemas de geoprocessamento utilizados para a manipulação e tratamento das informações espaciais mostraram-se adequados e eficientes quando aplicados na coleta, processamento e integração de dados geotécnicos. Para a área teste foram identificadas trinta e sete unidades com perfis de solos com comportamento geotécnico praticamente similar frente ao uso e à ocupação do solo, cujas informações descritivas sobre o meio físico puderam ser facilmente acessadas e visualizadas, no computador, por meio da integração banco de dados geotécnicos com Sistema de Informações Geográficas. Por outro lado, o emprego de técnicas de processamento e classificação de imagens digitais revelou-se um recurso importante para a obtenção de informações sobre o meio físico, enquanto o uso de modelagem digital do terreno (MDT) agilizou o mapeamento das declividades e o cálculo da suscetibilidade potencial à erosão laminar, além de permitir a geração do relevo em perspectiva da região estudada.
Resumo:
o monitoramento da expansão das áreas urbanas e a análise da sua interação com o meio físico têm sido um grande desafio para os técnicos de planejamento urbano. No Brasil, em especial, dada a velocidade com que o fenômeno se processa e graças a um crescimento desordenado das cidades nas últimas décadas, esses estudos, que envolvem um elevado número de informações, tem exigido decisões e diagnósticos urbanos cada vez mais rápidos. Esta dissertação propõe uma metodologia para o planejamento racional do uso do solo urbano através do emprego integrado de tecnologias recentes como Sistema de Informações Geográficas (SIG), Modelagem Numérica do Terreno (MNT) e Sensoriamento Remoto através de imagens orbitais. Para isso, são implementados no SIG desenvolvido pelo INPE dados provenientes de cartas topográficas, de mapas temáticos do meio físico e de imagens orbitais LANSAT/TM da região estudada. A partir desses dados iniciais são geradas, também num SIG, outras informações com objetivo de estudar a evolução da área urbana, identificar áreas com suscetibilidade preliminar à erosão laminar, áreas com restrição ao uso urbano e áreas de eventos perigosos e riscos. o trabalho apresenta inicialmente uma revisão bibliográfica sobre a aplicação de Sensoriamento Remoto, Modelagem Numérica do Terreno (MNT) e Sistema de Informações Geográficas (SIG) em estudos urbanos. Segue-se a conceituação e aspectos teóricos dessas três ferramentas básicas utilizadas. A metodologia propriamente dita traz os planos de informações originais e as suas respectivas fontes de informações, os processos de classificação de imagens digitais empregados e os modelos de cruzamentos desenvolvidos para um SIG. A área teste escolhida é a sub-bacia do Arroio Feijó, localizada na região metropolitana de Porto Alegre, na porção centro-leste do Estado do Rio Grande do Sul. A região é caracterizada por uma elevada densidade populacional, pela presença de áreas inundáveis e pela ocorrência de processos eroslVOS. Os resultados mostram que a metodologia proposta é adequada e eficiente para agilizar as atividades de planejamento urbano, subsidiando a elaboração de Planos Diretores de Desenvolvimento Integrado e orientando o crescimento das cidades para regiões mais favoráveis. Além disso, contribui para a prevenção de parcela dos riscos e problemas geotécnicos relacionados ao meio físico nas áreas urbanas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)