975 resultados para Circulating endothelial cells
Resumo:
Methamphetamine (METH) is a powerful psychostimulant drug used worldwide for its reinforcing properties. In addition to the classic long-lasting monoaminergic-disrupting effects extensively described in the literature, METH has been consistently reported to increase blood brain barrier (BBB) permeability, both in vivo and in vitro, as a result of tight junction and cytoskeleton disarrangement. Microtubules play a critical role in cell stability, which relies on post-translational modifications such as a-tubulin acetylation. As there is evidence that psychostimulants drugs modulate the expression of histone deacetylases (HDACs), we hypothesized that in endothelial cells METH-mediation of cytoplasmatic HDAC6 activity could affect tubulin acetylation and further contribute to BBB dysfunction. To validate our hypothesis, we exposed the bEnd.3 endothelial cells to increasing doses of METH and verified that itleads to an extensivea-tubulin deacetylation mediated by HDACs activation. Furthermore, since we recently reported that acetyl-L-carnitine (ALC), a natural occurring compound, prevents BBB structural loss in a context of METH exposure, we reasoned that ALC could also preserve the acetylation of microtubules under METH action. The present results confirm that ALC is able to prevent METH-induced deacetylation providing effective protection on microtubule acetylation. Although further investigation is still needed, HDACs regulation may become a new therapeutic target for ALC.
Resumo:
Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. AcetylL-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underling its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METHtriggered MMPs’ activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.
Resumo:
RESUMO: As células endoteliais definem e delineiam todo o sistema vascular...Nesta tese procurámos explorar o papel que o ambiente tumoral exerce sobre as células endoteliais. ... Avaliamos também a capacidade anti-angiogénica de alguns derivados do estrogénio... Em suma os nossos resultados mostram a importância de um controlo rigoroso da regulação transcricional...
Resumo:
HIV coinfection modifies the clinical course of leishmaniasis by promoting a Th2 pattern of cytokine production. However, little information is available regarding the lymphocytic response in untreated coinfected patients. This work presents the immunophenotyping of Leishmania-stimulated T cells from a treatment-naÏve HIV+ patient with ML. Leishmania braziliensis antigens induced CD69 expression on CD3+CD4+ and CD3+CD8+ cells. It also increased IL-4 intracellular staining on CD3+CD4+GATA3- population and decreased the percentage of CD3+CD4+IL-17+ cells. This suggests that modulations in the IL-4R/STAT6 pathway and the Th17 population may serve as parasitic evasion mechanisms in HIV/ML. Further studies are required to confirm these results.
Resumo:
Inspired by the native co-existence of multiple cell types and from the concept of deconstructing the stem cell niche, we propose a co-encapsulation strategy within liquified capsules. The present team has already proven the application of liquified capsules as bioencapsulation systems1. Here, we intend to use the optimized system towards osteogenic differentiation. Capsules encapsulating adipose stem cells alone (MONO-capsules) or in co-culture with endothelial cells (CO-capsules) were maintained in endothelial medium with or without osteogenic differentiation factors. The suitability of the capsules for living stem and endothelial cells encapsulation was demonstrated by MTS and DNA assays. The osteogenic differentiation was assessed by quantifying the deposition of calcium and the activity of ALP up to 21 days. CO capsules had an enhanced osteogenic differentiation, even when cultured in the absence of osteogenic factors. Furthermore, osteopontin and CD31 could be detected, which respectively indicate that osteogenic differentiation had occurred and endothelial cells maintained their phenotype. An enhanced osteogenic differentiation by co-encapsulation was also confirmed by the upregulation of osteogenic markers (BMP-2, RUNX2, BSP) while the expression of angiogenic markers (VEGF, vWF, CD31) revealed the presence of endothelial cells. The proposed capsules can also act as a growth factor release system upon implantation, as showed by VEGF and BMP-2 quantification. These findings demonstrate that the co-encapsulation of stem and endothelial cells within liquified injectable capsules provides a promising strategy for bone tissue engineering.
Resumo:
Background: Nitric oxide (NO) has been largely associated with cardiovascular protection through improvement of endothelial function. Recently, new evidence about modulation of NO release by microRNAs (miRs) has been reported, which could be involved with statin-dependent pleiotropic effects, including anti-inflammatory properties related to vascular endothelium function. Objective: To evaluate the effects of cholesterol-lowering drugs including the inhibitors of cholesterol synthesis, atorvastatin and simvastatin, and the inhibitor of cholesterol absorption ezetimibe on NO release, NOS3 mRNA expression and miRs potentially involved in NO bioavailability. Methods: Human umbilical vein endothelial cells (HUVEC) were exposed to atorvastatin, simvastatin or ezetimibe (0 to 5.0 μM). Cells were submitted to total RNA extraction and relative quantification of NOS3 mRNA and miRs -221, -222 and -1303 by qPCR. NO release was measured in supernatants by ozone-chemiluminescence. Results: Both statins increased NO levels and NOS3 mRNA expression but no influence was observed for ezetimibe treatment. Atorvastatin, simvastatin and ezetimibe down-regulated the expression of miR-221, whereas miR-222 was reduced only after the atorvastatin treatment. The magnitude of the reduction of miR-221 and miR-222 after treatment with statins correlated with the increment in NOS3 mRNA levels. No influence was observed on the miR-1303 expression after treatments. Conclusion: NO release in endothelial cells is increased by statins but not by the inhibitor of cholesterol absorption, ezetimibe. Our results provide new evidence about the participation of regulatory miRs 221/222 on NO release induction mediated by statins. Although ezetimibe did not modulate NO levels, the down-regulation of miR-221 could involve potential effects on endothelial function.
Resumo:
Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.
Resumo:
PURPOSE: To determine whether bovine corneal endothelial (BCE) cells and keratocytes express the inducible form of nitric oxide synthase (NOS) after exposure to cytokines and lipopolysaccharide (LPS), and to study the regulation of NOS by growth factors. METHODS: Cultures of bovine corneal endothelial cells and keratocytes were exposed to increasing concentrations of LPS, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). At selected intervals after exposure, nitrite levels in the supernatants were evaluated by the Griess reaction. Total RNA was extracted from the cell cultures, and messenger RNA levels for inducible NOS (NOS-2) were measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Exposure of BCE cells and keratocytes to LPS and IFN-gamma resulted in an increase of nitrite levels that was potentiate by the addition of TNF-alpha. Analysis by RT-PCR demonstrated that nitrite release was correlated to the expression of NOS-2 messenger RNA in BCE cells and keratocytes. Stereoselective inhibitors of NOS and cycloheximide inhibited LPS-IFN-gamma-induced nitrite release in both cells, whereas transforming growth factor-beta (TGF-beta) slightly potentiated it. Fibroblast growth factor-2 (FGF-2) inhibited LPS-IFN-gamma-induced nitrite release and NOS-2 messenger RNA accumulation in keratocytes but not in BCE cells. CONCLUSIONS: The results demonstrate that in vitro activation of keratocytes and BCE cells by LPS and cytokines induces NOS-2 expression and release of large amounts of NO. The high amounts of NO could be involved in inflammatory corneal diseases in vivo.
Resumo:
Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA) before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.
Resumo:
We investigated the cytokine profile of peripheral mononuclear cells from chronic osteomyelitis (OST) patients following in vitro stimulation with staphylococcal enterotoxin A (SEA). We demonstrate that stimulation with SEA induced prominent lymphocyte proliferation and high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-4 and IL-10 secretion in both OST and non-infected individuals (NI). Even though stimulation with SEA had no impact on IL-6 production in either patient group, the baseline level of IL-6 production by cells from OST patients was always significantly less than that produced by cells from NI. After classifying the osteomyelitic episodes based on the time after the last reactivation event as "early" (1-4 months) or "late" osteomyelitis (5-12 months), we found that increased levels of TNF-α and IL-4 in combination with decreased levels of IL-6 were observed in the early episodes. By contrast, increased levels of IL-10, IL-2 and IL-6 were hallmarks of late episodes. Our data demonstrate that early osteomyelitic episodes are accompanied by an increased frequency of "high producers" of TNF-α and IL-4, whereas late events are characterised by increased frequencies of "high producers" of IL-10, IL-6 and IL-2. These findings demonstrate the distinct cytokine profiles in chronic osteomyelitis, with a distinct regulation of IL-6 production during early and late episodes.
Resumo:
An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.
Resumo:
The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.
Resumo:
Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was reduced in HUVECs activated by IFN-γ. Enhanced fusion of lysosomes with bacteria-containing vacuoles was observed by acid phosphatase and the colocalisation of Rab-5, Rab-7 and lysosomal-associated membrane protein-1 with GBS in IFN-γ-activated HUVECs. IFN-γ resulted in an enhancement of the phagosome maturation process in HUVECs, improving the capacity to control the intracellular survival of GBS.
Resumo:
Tumor angiogenesis is an essential step in tumor progression and metastasis formation. Suppression of tumor angiogenesis results in the inhibition of tumor growth. Recent evidence indicates that vascular integrins, in particular alpha V beta 3, are important regulators of angiogenesis, including tumor angiogenesis. Integrin alpha V beta 3 antagonists, such as blocking antibodies or peptides, suppress tumor angiogenesis and tumor progression in many preclinical tumor models. The potential therapeutic efficacy of extracellular integrin antagonists in human cancer is currently being tested in clinical trials. Selective disruption of the tumor vasculature by high doses of tumor necrosis factor (TNF) and interferon gamma (IFN-gamma), and the antiangiogenic activity of nonsteroidal anti-inflammatory drugs are associated with the suppression of integrin alpha V beta 3 function and signaling in endothelial cells. Furthermore, expression of isolated integrin cytoplasmic domains disrupts integrin-dependent adhesion, resulting in endothelial cell detachment and apoptosis. These results confirm the critical role of vascular integrins in promoting endothelial cell survival and angiogenesis and suggest that intracellular targeting of integrin function and signaling may be an alternative strategy to extracellular integrin antagonists for the therapeutic inhibition of tumor angiogenesis.