996 resultados para Circuit theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the power utilities around the world experienced spurious tripping of directional earth fault relays in their mesh distribution networks due to induced circulating currents. This circulating current is zero sequence and induced in the healthy circuit due to the zero sequence current flow resulting from a ground fault of a parallel circuit. This paper quantitatively discusses the effects of mutual coupling on earth fault protection of distribution systems. An actual spurious tripping event is analyzed to support the theory and to present options for improved resilience to spurious tripping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A clear understanding of the cognitive-emotional processes underpinning desires to overconsume foods and adopt sedentary lifestyles can inform the development of more effective interventions to promote healthy eating and physical activity. The Elaborated Intrusion Theory of Desires offers a framework that can help in this endeavor through its emphases on the roles of intrusive thoughts and elaboration of multisensory imagery. There is now substantial evidence that tasks that compete for limited working memory resources with food-related imagery can reduce desires to eat that food, and that positive imagery can promote functional behavior. Meditation mindfulness can also short-circuit elaboration of dysfunctional cognition. Functional Decision Making is an approach that applies laboratory-based research on desire, to provide a motivational intervention to establish and entrench behavior changes, so healthy eating and physical activity become everyday habits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The domination and Hamilton circuit problems are of interest both in algorithm design and complexity theory. The domination problem has applications in facility location and the Hamilton circuit problem has applications in routing problems in communications and operations research.The problem of deciding if G has a dominating set of cardinality at most k, and the problem of determining if G has a Hamilton circuit are NP-Complete. Polynomial time algorithms are, however, available for a large number of restricted classes. A motivation for the study of these algorithms is that they not only give insight into the characterization of these classes but also require a variety of algorithmic techniques and data structures. So the search for efficient algorithms, for these problems in many classes still continues.A class of perfect graphs which is practically important and mathematically interesting is the class of permutation graphs. The domination problem is polynomial time solvable on permutation graphs. Algorithms that are already available are of time complexity O(n2) or more, and space complexity O(n2) on these graphs. The Hamilton circuit problem is open for this class.We present a simple O(n) time and O(n) space algorithm for the domination problem on permutation graphs. Unlike the existing algorithms, we use the concept of geometric representation of permutation graphs. Further, exploiting this geometric notion, we develop an O(n2) time and O(n) space algorithm for the Hamilton circuit problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the chaos synchronization of the modified Chua's circuit with x vertical bar x vertical bar function. We firstly show that a couple of the modified Chua systems with different parameters and initial conditions can be synchronized using active control when the values of parameters both in drive system and response system are known aforehand. Furthermore, based on Lyapunov stability theory we propose an adaptive active control approach to make the states of two identical Chua systems with unknown constant parameters asymptotically synchronized. Moreover the designed controller is independent of those unknown parameters. Numerical simulations are given to validate the proposed synchronization approach.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work was supported in part by the National Natural Science Foundation of China under Grant 60536010, Grant 60606019, Grant 60777029, and Grant 60820106004, and in part by the National Basic Research Program of China under Grant 2006CB604902, Grant 2006CB302806, and Grant 2006dfa11880.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ballistic spin transport in one-dimensional waveguides with the Rashba effect is studied. Due to the Rashba effect, there are two electron states with different wave vectors for the same energy. The wave functions of two Rashba electron states are derived, and it is found that their phase depend on the direction of the circuit and the spin directions of two states are perpendicular to the circuit, with the +pi/2 and -pi/2 angles, respectively. The boundary conditions of the wave functions and their derivatives at the intersection of circuits are given, which can be used to investigate the waveguide transport properties of Rashba spin electron in circuits of any shape and structure. The eigenstates of the closed circular and square loops are studied by using the transfer matrix method. The transfer matrix M(E) of a circular arc is obtained by dividing the circular arc into N segments and multiplying the transfer matrix of each straight segment. The energies of eigenstates in the closed loop are obtained by solving the equation det[M(E)-I]=0. For the circular ring, the eigenenergies obtained with this method are in agreement with those obtained by solving the Schrodinger equation. For the square loop, the analytic formula of the eigenenergies is obtained first The transport properties of the AB ring and AB square loop and double square loop are studied using the boundary conditions and the transfer matrix method In the case of no magnetic field, the zero points of the reflection coefficients are just the energies of eigenstates in closed loops. In the case of magnetic field, the transmission and reflection coefficients all oscillate with the magnetic field; the oscillating period is Phi(m)=hc/e, independent of the shape of the loop, and Phi(m) is the magnetic flux through the loop. For the double loop the oscillating period is Phi(m)=hc/2e, in agreement with the experimental result. At last, we compared our method with Koga's experiment. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253752]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantization of RLC circuit is given and described by a double-wave function. A comparison between classical limit result and those of classical theory is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical receiver front-end for SONET OC-96 receivers was analyzed and designed in 0.18 mu m CMOS process. It consists of a transimpedance amplifier (TIA) and a limiting amplifier (LA). The TIA takes a fully differential configuration, and regulated cascode (RGC) input stage is implemented. The LA was realized by five cascaded identical gain stages with active inductor load. The TIA achieved 4.2GHz bandwidth for 0.5pF photodiode (PD) capacitance and 1.2k 0 transimpedance gain. The LA achieved 5.4GHz bandwidth and 29dB voltage gain. The optical sensitivity is -19dBm at 5-Gb/s for a bit-error rate of 10(-12), and it dissipates 45.5mW for I.8V supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a theory of human-like reasoning in the general domain of designed physical systems, and in particular, electronic circuits. One aspect of the theory, causal analysis, describes how the behavior of individual components can be combined to explain the behavior of composite systems. Another aspect of the theory, teleological analysis, describes how the notion that the system has a purpose can be used to aid this causal analysis. The theory is implemented as a computer program, which, given a circuit topology, can construct by qualitative causal analysis a mechanism graph describing the functional topology of the system. This functional topology is then parsed by a grammar for common circuit functions. Ambiguities are introduced into the analysis by the approximate qualitative nature of the analysis. For example, there are often several possible mechanisms which might describe the circuit's function. These are disambiguated by teleological analysis. The requirement that each component be assigned an appropriate purpose in the functional topology imposes a severe constraint which eliminates all the ambiguities. Since both analyses are based on heuristics, the chosen mechanism is a rationalization of how the circuit functions, and does not guarantee that the circuit actually does function. This type of coarse understanding of circuits is useful for analysis, design and troubleshooting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new family of neural network architectures is presented. This family of architectures solves the problem of constructing and training minimal neural network classification expert systems by using switching theory. The primary insight that leads to the use of switching theory is that the problem of minimizing the number of rules and the number of IF statements (antecedents) per rule in a neural network expert system can be recast into the problem of minimizing the number of digital gates and the number of connections between digital gates in a Very Large Scale Integrated (VLSI) circuit. The rules that the neural network generates to perform a task are readily extractable from the network's weights and topology. Analysis and simulations on the Mushroom database illustrate the system's performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental results are presented to show how a planar circuit, printed on a laterally shielded dielectric waveguide, can induce and control the radiation from a leaky-mode. By studying the leaky-mode complex propagation constant, a desired radiation pattern can be synthesized, controlling the main radiation characteristics (pointing direction, beamwidth, sidelobes level) for a given frequency, This technique leads to very flexible and original leaky-wave antenna designs. The experiments show to be in very good agreement with the leaky-mode theory.