989 resultados para Christensen, Jens Christian (1856-1930) -- Portraits
Resumo:
The epidemiology of an enrofloxacin-resistant Escherichia coli clone was investigated during two separate outbreaks of colibacillosis in the Danish broiler production. In total five flocks were reported affected by the outbreaks. Recorded first-week mortalities were in the range of 1.7-12.7%. The clone was first isolated from dead broilers and subsequently demonstrated in samples from associated hatchers and the parent flock with its embryonated eggs, suggesting a vertical transmission from the parents. The second outbreak involved two broiler flocks unrelated to the affected flocks from the first outbreak. However, the clone could not be demonstrated in the associated parent flock. Furthermore, samplings from grand-parent flocks were negative for the outbreak clone. The clonality was evaluated by plasmid profiling and pulsed-field gel electrophoresis. None of the recognized virulence factors were demonstrated in the outbreak clone by microarray and PCR assay. The molecular background for the fluoroquinolone-resistance was investigated and point mutations in gyrA and parC leading to amino-acid substitutions in quinolone-resistance determining regions of GyrA and ParC were demonstrated. Vertical transmission of enrofloxacin-resistant E. coli from healthy parents resulting in high first-week mortality in the offspring illustrates the potential of the emergence and spreading of fluoroquinolone-resistant bacteria in animal husbandry, even though the use of fluoroquinolones is restricted.
Resumo:
ABSTRACT: INTRODUCTION: In transgenic animal models of sepsis, members of the Bcl-2-family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro- and anti-apoptotic members of the Bcl-2-family of proteins in patients with early stage severe sepsis. METHODS: In this prospective case-control study patients were recruited from three intensive care units in a university hospital. Sixteen patients were enrolled as soon as they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and eleven healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine (PS) externalization in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed by flow cytometry. Specific mRNA's of Bcl-2 family members were quantified from whole blood by real-time polymerase chain reaction. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc testing was performed. RESULTS: In all lymphocyte populations caspase-3 (p<0.05) was activated, which was reflected in an increased PS externalization (p<0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p<005) and in B-cells (p<0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared to critically ill patients (p<0.001) and 51.6 fold as compared to healthy controls (p<0.05). Bid was increased 12.9 fold compared to critically ill (p<0.001). In the group of the mitochondrial apoptosis-inducers, Bak was upregulated 5.6 fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p<0.001, p<0.05). CONCLUSIONS: In early severe sepsis a gene expression pattern with induction of the pro-apoptotic Bcl-2 family members Bim, Bid and Bak and a downregulation of the anti-apoptotic Bcl-2 and Bcl-xl was observed in peripheral blood. This constellation may affect cellular susceptibility to apoptosis and complex immune dysfunction in sepsis.
Resumo:
During sepsis, a severe systemic disorder, micronutrients often are decreased. Apoptosis is regarded as an important mechanism in the development of often significant immunosuppression in the course of the disease. This study aimed to investigate alpha-tocopherol and selenium in reference to apoptosis in patients with sepsis. 16 patients were enrolled as soon as they fulfilled the criteria of severe sepsis. 10 intensive care patients without sepsis and 11 healthy volunteers served as controls. alpha-Tocopherol, selenium and nucleosomes were measured in serum. Phosphatidylserine externalization and Bcl-2 expression were analyzed in T-cells by flow cytometry. Serum alpha-tocopherol and selenium were decreased in severe sepsis but not in non-septic critically ill patients (p < 0.05). Conversely, markers of apoptosis were increased in sepsis but not in critically ill control patients: Nucleosomes were found to be elevated 3 fold in serum (p < 0.05) and phosphatidylserine was externalized on an expanded subpopulation of T-cells (p < 0.05) while Bcl-2 was expressed at lower levels (p < 0.05). The decrease of micronutrients correlated with markers of accelerated apoptosis. Accelerated apoptosis in sepsis is associated with low alpha-tocopherol and selenium. The results support the investigation of micronutrient supplementation strategies in severe sepsis.
Resumo:
During therapeutic hyperbaric oxygenation lymphocytes are exposed to high partial pressures of oxygen. This study aimed to analyze the mechanism of apoptosis induction by hyperbaric oxygen. For intervals of 0.5-4 h Jurkat-T-cells were exposed to ambient air or oxygen atmospheres at 1-3 absolute atmospheres. Apoptosis was analyzed by phosphatidylserine externalization, caspase-3 activation and DNA-fragmentation using flow cytometry. Apoptosis was already induced after 30 min of hyperbaric oxygenation (HBO, P < 0.05). The death receptor Fas was downregulated. Inhibition of caspase-9 but not caspase-8 blocked apoptosis induction by HBO. Hyperbaric oxygen caused a loss of mitochondrial membrane potential and caspase-9 induction. The mitochondrial pro-survival protein Bcl-2 was upregulated, and antagonizing Bcl-2 function potentiated apoptosis induction by HBO. In conclusion, a single exposure to hyperbaric oxygenation induces lymphocyte apoptosis by a mitochondrial and not a Fas-related mechanism. Regulation of Fas and Bcl-2 may be regarded as protective measures of the cell in response to hyperbaric oxygen.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) plays an important regulatory role in sepsis. In the promoter region a C/G single nucleotide polymorphism (SNP) at position -173 (rs755622) and a CATT5-8 microsatellite at position -794 are related to modified promoter activity. The purpose of the study was to analyze their association with the incidence and outcome of severe sepsis. METHODS: Genotype distributions and allele frequencies in 169 patients with severe sepsis, 94 healthy blood donors and 183 postoperative patients without signs of infection or inflammation were analyzed by real time PCR and Sequence analysis. All included individuals were Caucasians. RESULTS: Genotype distribution and allele frequencies of severe sepsis patients were comparable to both control groups. However, the genotype and allele frequencies of both polymorphisms were associated significantly with the outcome of severe sepsis. The highest risk of dying from severe sepsis was detectable in patients carrying a haplotype with the alleles -173 C and CATT7 (p = 0.0005, fisher exact test, RR = 1,806, CI: 1.337 to 2.439). CONCLUSION: The haplotype with the combination of the -173 C allele and the -794 CATT7 allele may not serve as a marker for susceptibility to sepsis, but may help identify septic patients at risk of dying.
Resumo:
Valoración de la transferencia temporal de los modelos de distribución de especies para su aplicación en nuestros días utilizando datos paleobotánicos Corilus avellana y Alnus glutinosa.
Resumo:
Includes index.
Resumo:
Sequel: Moneda falsa.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.