992 resultados para Cholinergic system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/mu L), the nicotinic agonist nicotine (NIC; 320 nmol/mu L), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschreibt die Wirkung von Hyperforin, einem Johanniskraut-Inhaltsstoff, auf das zentrale cholinerge System. Da der HACU Na+-abhängig operiert und Hyperforin den transmembranären Na+-Gradienten verringert, wurde an Rattenkortex-Synaptosomen in vitro geprüft, ob der HACU durch Hyperforin gehemmt wird. Es wurde gefunden, dass Hyperforin den HACU mit einer Hemmkonstante IC50 von 8.5 µM inhibiert. Da die de novo-ACh-Synthese direkt HACU-Aktivitäts-abhängig ist, wurde in vivo mittels Mikrodialyse-Technik verifziert, ob die cholinerge Transmission beeinflusst wird. Lokale Infusionen von 100 µM Hyperforin in das Striatum resultierten in einer Reduktion der ACh-Freisetzung bei parallelem Ch-Spiegel-Anstieg bedingt durch die HACU-Inhibition. Infusionen niedrigerer Konzentration (10 und 30 µM) führten hingegen zu einer konzentrations-abhängigen Stimulation der ACh-Freisetzung bei simultaner Ch-Spiegel-Senkung. Systemische Applikation von 1 und 10 mg/kg i.p. resultierten in einer verstärkten ACh-Freisetzung im Striatum und im Hippokampus; diese Dosen führen zu therapeutisch relevanten Plasmaspiegeln. Die Ergebnisse im Striatum und im Hippokampus erklären die motilitätsverringernden Effekte im Tierexperiment bzw. die benignen Effekte in Verhaltensmodellen für Lernen und Gedächtnis. Die vergleichende Analyse der Mikrodialyse-Experimente ergab, dass eine antidepressive Johanniskraut-Begleitmedikation bei Parkinson ungünstig, jedoch Alzheimer günstig zu bewerten ist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluctuations in consciousness and visual hallucinations are common neuropsychiatric features of dementia with Lewy bodies and Parkinson's disease dementia. To investigate potential neural correlates, we compared how changes in brain perfusion over a 1-year period were related to changes in the severity of these key clinical features. We recruited 29 subjects with either Parkinson's disease with dementia (15 subjects) or dementia with Lewy bodies (14 subjects). Cerebral perfusion was measured using HMPAO SPECT at baseline, and repeated 1 year later. The presence of hallucinations (Neuropsychiatric Inventory), severity of fluctuations in consciousness (fluctuation assessment scale) and cognitive ability (CAMCOG) were assessed at both time points. After controlling for changes in cognitive ability and effect of cholinesterase medication, we found a significant correlation between an increase in perfusion in midline posterior cingulate and decrease in hallucination severity. There was also a significant correlation between increased fluctuations of consciousness and increased thalamic and decreased inferior occipital perfusion. We have identified important neural correlates of key clinical features in Lewy body dementia and postulate that the associations can be understood through the influence of the cholinergic system on attention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classical eyeblink conditioning is a well-characterized model paradigm that engages the septohippocampal cholinergic system. This form of associative learning is impaired in normal aging and severely disrupted in Alzheimer's disease (AD). Some nicotinic cholinergic receptor subtypes are lost in AD, making the use of nicotinic allosterically potentiating ligands a promising therapeutic strategy. The allosterically potentiating ligand galantamine (Gal) modulates nicotinic cholinergic receptors to increase acetylcholine release as well as acting as an acetylcholinesterase (AChE) inhibitor. Gal was tested in two preclinical experiments. In Experiment 1 with 16 young and 16 older rabbits, Gal (3.0 mg/kg) was administered for 15 days during conditioning, and the drug significantly improved learning, reduced AChE levels, and increased nicotinic receptor binding. In Experiment 2, 53 retired breeder rabbits were tested over a 15-wk period in four conditions. Groups of rabbits received 0.0 (vehicle), 1.0, or 3.0 mg/kg Gal for the entire 15-wk period or 3.0 mg/kg Gal for 15 days and vehicle for the remainder of the experiment. Fifteen daily conditioning sessions and subsequent retention and relearning assessments were spaced at 1-month intervals. The dose of 3.0 mg/kg Gal ameliorated learning deficits significantly during acquisition and retention in the group receiving 3.0 mg/kg Gal continuously. Nicotinic receptor binding was significantly increased in rabbits treated for 15 days with 3.0 mg/kg Gal, and all Gal-treated rabbits had lower levels of brain AChE. The efficacy of Gal in a learning paradigm severely impaired in AD is consistent with outcomes in clinical studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nicotine administration in humans and rodents enhances memory and attention, and also has a positive effect in Alzheimer's Disease. The Medial Septum / Diagonal Band of Broca complex (MS/DBB) – a main cholinergic system – massively projects to the hippocampus through the fimbria-fornix, and this pathway is called the septohippocampal pathway. It has been demonstrated that the MS/DBB acts directly on the local field potential (LFP) rhythmic organization of the hippocampus, especially in the rhythmogenesis of Theta (4-8Hz) – an oscillation intrinsically linked to hippocampus mnemonic function. In vitro experiments gave evidence that nicotine applied to the MS/DBB generates a local network Theta rhythm within the MS/DBB. Thus, the present study proposes to elucidate the function of nicotine in the MS/DBB on the septo-hippocampal pathway. In vivo experiments compared the effect of MS/DBB microinfusion of saline (n=5) and nicotine (n=8) on Ketamine/Xylazine anaesthetized mice. We observed power spectrum density in the Gamma range (35 to 55 Hz) increasing in both structures (Wilcoxon Rank-Sum test, p=0.038) but with no change in coherence between these structures in the same range (Wilcoxon Rank-Sum test, p=0.60). There was also a decrease in power of the ketamineinduced Delta oscillation (1 to 3 Hz). We also performed in vitro experiments on the effect of nicotine on membrane voltage and action potential. We patch-clamped 22 neurons in current-clamp mode; 12 neurons were responsive to nicotine, half of them increased firing rate and other 6 decreased, and they significantly differed in action potential threshold (-47.3±0.9 mV vs. -41±1.9 mV, respectively, p=0.007) and halfwidth time (1.6±0.08 ms vs. 2±0.12 ms, respectively, p=0.01). Furthermore, we performed another set of in vitro experiments concerning the connectivity of the three major neuronal populations of MS/DBB that use acetylcholine, GABA or glutamate as neurotransmitter. Paired patch-clamp recordings found that glutamatergic and GABAergic neurons realize intra-septal connections that produce sizable currents in MS/DBB postsynaptic neurons. The probability of connectivity between different neuronal populations gave rise to a MS/DBB topology that was implemented in a realistic model, which corroborates that the network is highly sensitive to the generation of Gamma rhythm. Together, the data available in the full set of experiments suggests that nicotine may act as a cognitive enhancer, by inducing gamma oscillation in the local circuitry of the MS/DBB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cholinergic, serotoninergic and peptidergic neuronal pathways have been demonstrated in whole-mount preparations of the frog-lung digenean trematode, Haematoloechus medioplexus, using enzyme cytochemical methodologies and indirect immunocytochemical techniques in conjunction with confocal scanning laser microscopy. All 3 classes of neuroactive substance mere found throughout both central and peripheral elements of a well-developed orthogonal nervous system, Peptidergic immunoreactivity was particularly strong, using antisera directed to native flatworm neuropeptides, neuropeptide F, and FMRFamide-related peptides (FaRPs), and there was significant overlap in the staining with that for cholinergic components, The serotoninergic system appeared quite separate, with the staining localised to a different set of neurons. (C) 1997 Australian Society for Parasitology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The central (CNS) and peripheral (PNS) nervous systems of the cyclophyllidean tapeworm, Moniezia expansa, were examined for the presence of cholinergic, serotoninergic and peptidergic elements using enzyme cytochemical and immunocytochemical techniques in conjunction with light and confocal scanning laser microscopy. Cholinesterase activity and 5-hydroxytryptamine- and regulatory peptide-immunoreactivities (IRs) were localized to the nerve fibres and cell bodies of all of the major neuronal components in the CNS of the worm, including the cerebral ganglia and connecting commissure, the 10 longitudinal nerve cords and associated transverse ring commissures. Although each of the 3 systems appeared well developed and comprised a significant portion of the nervous system, the serotoninergic constituent was the most highly developed, consisting of a vast array of nerve fibres and cell bodies distributed throughout the strobila of the worm. A close association of cholinesterase reactivity and peptide-IRs was evident throughout the CNS, indicating the possible co-localization of acetylcholine and neuropeptides. Within the PNS, cholinergic activity and serotoninergic- and peptidergic-IRs occurred in the subtegumental network of nerve fibres and somatic musculature. Although all 3 neurochemical elements were present in the acetabula, they were found in different nerve fibres; only cholinergic and peptidergic cell bodies were found. The common genital opening, vagina and ootype regions of the reproductive system displayed a rich innervation of all 3 types of neuronal populations. Within the peptidergic system, immunostaining with antisera raised to the C-terminus of the neuropeptide Y superfamily of peptides and the invertebrate peptides, neuropeptide F (M. expansa) and FMRFamide was the most prevalent. Limited positive-IR for substance P and neurokinin A were also recorded in the CNS of the worm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cholinergic, serotoninergic (5-HT) and peptidergic neuronal pathways have been demonstrated in both central and peripheral nervous systems of adult Discocotyle sagittata, using enzyme histochemistry and indirect immunocytochemistry in conjunction with confocal scanning laser microscopy. Antisera to 2 native flatworm neuropeptides, neuropeptide F and the fMRFamide-related peptide (FaRP), GNFFRFamide, were employed to detect peptide immunoreactivity. The CNS is composed of paired cerebral ganglia and connecting dorsal commissure, together with several paired longitudinal nerve cords. The main longitudinal nerve cords (lateral, ventral and dorsal) are interconnected at intervals by a series of annular cross-connectives, producing a ladder-like arrangement typical of the platyhelminth nervous system. At the lever of the haptor, the ventral cords provide nerve roots which innervate each of the 8 clamps. Cholinergic and peptidergic neuronal organisation was similar, but distinct from that of the serotoninergic components. The PNS and reproductive system are predominantly innervated by peptidergic neurones. Copyright (C) 1996 Australian Society for Parasitology. Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours. © 2011 Landgren et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The localization and distribution of cholinergic, serotoninergic (5-HT, serotonin) and peptidergic components of the nervous system of adult Cephalochlamys namaquensis (Cestoda: Pseudophyllidea) have been determined using enzyme histochemical and immunocytochemical techniques interfaced with light and confocal scanning laser microscopy. All three classes of neuroactive substance showed a similar pattern of staining, occurring extensively throughout the central and peripheral nervous systems of the parasite. There were some minor regional differences in staining, suggesting specific roles for certain classes of neurone, and nerve cell bodies were most evident following immunostaining for serotonin. The general overlap in the distribution of staining may be indicative of som co-localization of neurotransmitter and/or neuromodulatory substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard enzyme cytochemical and indirect immunocytochemical techniques have been used in conjunction with light and confocal scanning laser microscopy (CSLM) to visualize cholinergic, serotoninergic and peptidergic nerve elements in whole-mount preparations of the amphibian urinary-bladder fluke, Gorgoderina vitelliloba. Cholinesterase (ChE) activity was localized in paired anterior ganglia, a connecting dorsal commissure and in the origins of the ventral nerve cords. Cholinergic ganglia were also evident in shelled embryos in the uterus. Serotonin-immunoreactivity (IR) was more extensive than ChE activity and was identified in both the central and peripheral nervous systems. Serotoninergic nerve fibres were associated with the somatic musculature and female reproductive ducts. Antisera to nine mammalian peptides and one invertebrate (FMRFamide) peptide have been used to investigate the peptidergic nervous system in the parasite. Immunoreactivity was obtained to five peptides, namely pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP) and FMRFamide. Peptidergic nerve fibres were found to be more abundant than demonstrable cholinergic or serotoninergic nerve fibres. NPY-IR was identified only in the main components of the central nervous system. However, PP- and PYY-IR occurred in the anterior ganglia, dorsal commissure, main nerve cords and in numerous small varicose fibres that ramified throughout the worm. Additionally, PP-immunoreactive nerve fibres were found to innervate the musculature of the female reproductive tracts. Six sites of IR were found in the acetabulum, using antisera directed towards the C-terminal end of PP and PYY, and these matched with the distribution of six non-ciliated rosette-like papillae observed by scanning electron microscopy. SP- and FMRFamide-IR were identified in the CNS, and FMRFamide-immunopositive nerve fibres were also evident in association with the gonopore/cirrus region and with the terminal excretory pore. Results are discussed with respect to possible roles for each of the neurochemical types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The localization and distribution of cholinergic, serotoninergic and peptidergic nerve elements in the proteocephalidean tapeworm, Proteocephalus pollanicola, have been investigated by enzyme histochemistry, and by an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy. Cholinesterase (ChE) activity was localized in the major components of the central nervous system (CNS) and the peripheral nervous system (PNS), including the innervation of the reproductive structures of the worm. Serotoninergic (5-HT) nerves were found in the paired cerebral ganglia, transverse commissure and in the 10 longitudinal nerve cords. Antisera to 17 mammalian regulatory peptides and the invertebrate peptide FMRFamide have been used to explore the peptidergic nervous system of the worm. The most extensive immunostaining occurred with antisera raised to members of the neuropeptide Y superfamily, namely neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). In all cases, intense immunoreactivity was found in numerous cell bodies and fibres of both the CNS and PNS, including the innervation of the reproductive apparatus. FMRFamide antisera stained the same structures to a comparable degree as those raised to the NPY superfamily. Cholinergic and peptidergic elements were much more prevalent within the CNS, while the serotoninergic nerve fibres tended to dominate in the PNS. The overlap obtained in staining patterns for the peptidergic and cholinergic components suggests that there may be a certain amount of co-localization of peptides with small-molecule transmitter substances in the same neurone. Weak staining for the tachykinin, substance P and for calcitonin gene-related peptide(CGRP) was confined to the major longitudinal nerve cords.