235 resultados para Cholera
Resumo:
We have characterized a nontoxic mutant of cholera toxin (CT) as a mucosal adjuvant in mice. The mutant CT was made by substitution of serine with phenylalanine at position 61 of the A subunit (S61F), which resulted in loss of ADP ribosyltransferase activity and toxicity. Mice were intranasally immunized with ovalbumin, tetanus toxoid, or influenza virus either alone or together with mutant CT S61F, native CT, or recombinant CT-B. Mice immunized with these proteins plus S61F showed high serum titers of protein-specific IgG and IgA antibodies that were comparable to those induced by native CT. Further, high protein-specific IgA antibody responses were observed in nasal and vaginal washes, saliva, and fecal extracts as well as increased numbers of IgG and IgA antibody forming cells in cervical lymph nodes and lung tissues of mice intranasally immunized with these proteins and S61F or native CT, but not with recombinant CT-B or protein alone. Both S61F and native CT enhanced the induction of ovalbumin-specific CD4+ T cells in lung and splenic tissues, and these T cells produced a Th2-type cytokine pattern of interleukin 4 (IL-4), IL-5, IL-6, and IL-10 as determined by analysis of secreted proteins and by quantitation of cytokine-specific mRNA. These results have shown that mutant CT S61F is an effective mucosal adjuvant when administrated intranasally and induces mucosal and systemic antibody responses which are mediated by CD4+ Th2-type cells.
Resumo:
GM1-ganglioside receptor binding by the B subunit of cholera toxin (CtxB) is widely accepted to initiate toxin action by triggering uptake and delivery of the toxin A subunit into cells. More recently, GM1 binding by isolated CtxB, or the related B subunit of Escherichia coli heat-labile enterotoxin (EtxB), has been found to modulate leukocyte function, resulting in the down-regulation of proinflammatory immune responses that cause autoimmune disorders such as rheumatoid arthritis and diabetes. Here, we demonstrate that GM1 binding, contrary to expectation, is not sufficient to initiate toxin action. We report the engineering and crystallographic structure of a mutant cholera toxin, with a His to Ala substitution in the B subunit at position 57. Whereas the mutant retained pentameric stability and high affinity binding to GM1-ganglioside, it had lost its immunomodulatory activity and, when part of the holotoxin complex, exhibited ablated toxicity. The implications of these findings on the mode of action of cholera toxin are discussed.
Resumo:
Cholera toxin is normally observed only in the Golgi apparatus and not in the endoplasmic reticulum (ER) although the enzymatically active A subunit of cholera toxin has a KDEL sequence. Here we demonstrate transport of horseradish peroxidase-labeled cholera toxin to the ER by electron microscopy in thapsigargin-treated A431 cells. Thapsigargin treatment strongly increased cholera toxin-induced cAMP production, and the formation of the catalytically active A1 fragment was somewhat increased. Binding of cholera toxin to the cell surface and transport of toxin to the Golgi apparatus were not changed in thapsigargin-treated cells, suggesting increased retrograde transport of cholera toxin from the Golgi apparatus to the ER. The data demonstrate that retrograde transport of cholera toxin can take place and that the transport is under regulation. The results are consistent with the idea that retrograde transport can be important for the action of cholera toxin.
Resumo:
Oral administration of autoantigens can prevent and partially suppress autoimmune diseases in a number of experimental models, Depending on the dose of antigen fed, this approach appears to involve distinct yet reversible and short-lasting mechanisms (anergy/deletion and suppression) and usually requires repeated feeding of large (suppression) to massive (anergy/deletion) amounts of autoantigens to be effective. Most importantly, this approach is relatively less effective in animals already systemically sensitized to the fed antigen, such as in animals already harboring autoreactive T cells and, thus, presumably also in humans suffering from an autoimmune disorder. We have previously shown that feeding a single dose of minute amounts of antigens conjugated to cholera toxin B subunit (CTB) can effectively suppress delayed-type hypersensitivity reactions in systemically immune animals. We now report that feeding small amounts of myelin basic protein (MBP) conjugated to CTB either before or after disease induction protected rats from experimental autoimmune encephalomyelitis. Such treatment was as effective in suppressing interleukin 2 production and proliferative responses of lymph node cells to MBP as treatment involving repeated feeding with much larger (50- to 100-fold) doses of free MBP. Different from the latter treatment, which led to decreased production of interferon-gamma in lymph nodes, low-dose oral CTB-MBP treatment was associated with increased interferon-gamma production. Most importantly, low-dose oral CTB-MBP treatment greatly reduced the level of leukocyte infiltration into spinal cord tissue compared with treatment with repeated feeding of large doses of MBP. These results suggest that the protection from experimental autoimmune encephalomyelitis achieved by feeding CTB-conjugated myelin autoantigen involves immunomodulating mechanisms that are distinct from those implicated by conventional protocols of oral tolerance induction.
Resumo:
Cholera toxin (CT) elicits a massive secretory response from intestinal epithelia by binding apical receptors (ganglioside GM1) and ultimately activating basolateral effectors (adenylate cyclase). The mechanism of signal transduction from apical to basolateral membrane, however, remains undefined. We have previously shown that CT action on the polarized human intestinal epithelial cell line T84 requires endocytosis and processing in multiple intracellular compartments. Our aim in the present study was to test the hypothesis that CT may actually move to its site of action on the basolateral membrane by vesicular traffic. After binding apical receptors, CT entered basolaterally directed transcytotic vesicles. Both CT B subunits and to a lesser extent CT A subunits were delivered intact to the serosal surface of the basolateral membrane. The toxin did not traverse the monolayer by diffusion through intercellular junctions. Transcytosis of CT B subunits displayed nearly identical time course and temperature dependency with that of CT-induced Cl- secretion--suggesting the two may be related. These data identify a mechanism that may explain the link between the toxin's apical receptor and basolateral effector.
Resumo:
Mode of access: Internet.
Resumo:
Tesis Univ. Río de Janeiro.
Resumo:
Tesis Univ. Río de Janeiro.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Parte secunda ó sea Ensayo sobre la patologia y terapéutica de esta enfermedad.