973 resultados para Chlamydia, female reproduction, pathogenesis, vaccine
Resumo:
Phenotypic data from female Canchim beef cattle were used to obtain estimates of genetic parameters for reproduction and growth traits using a linear animal mixed model. In addition, relationships among animal estimated breeding values (EBVs) for these traits were explored using principal component analysis. The traits studied in female Canchim cattle were age at first calving (AFC), age at second calving (ASC), calving interval (CI), and bodyweight at 420 days of age (BW420). The heritability estimates for AFC, ASC, CI and BW420 were 0.03±0.01, 0.07±0.01, 0.06±0.02, and 0.24±0.02, respectively. The genetic correlations for AFC with ASC, AFC with CI, AFC with BW420, ASC with CI, ASC with BW420, and CI with BW420 were 0.87±0.07, 0.23±0.02, -0.15±0.01, 0.67±0.13, -0.07±0.13, and 0.02±0.14, respectively. Standardised EBVs for AFC, ASC and CI exhibited a high association with the first principal component, whereas the standardised EBV for BW420 was closely associated with the second principal component. The heritability estimates for AFC, ASC and CI suggest that these traits would respond slowly to selection. However, selection response could be enhanced by constructing selection indices based on the principal components. © CSIRO 2013.
Resumo:
Microorganisms in the pregnant female genital tract are not always associated with pathology. The factors that influence the maternal response to microorganisms remain ill defined. We review the state of knowledge of microbe-host interactions in gestational tissues and highlight mechanisms that promote tolerance or pathogenesis. Tolerance to microorganisms is promoted during pregnancy by several mechanisms including upregulation of anti-inflammatory mediators, induction of endotoxin tolerance, and possibly by regulation of autophagy. Conversely, an altered vaginal microbiota or a pre-existing viral presence may result in induction of excessive inflammation and preterm labor. Although infections play a prevalent role in preterm birth, microbes are present in gestational tissues of women with healthy outcomes and may provide beneficial functions. The complex interactions between different microbial species and the maternal immune system during gestation remain incompletely elucidated.
Resumo:
Abstract Background Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs.
Resumo:
UCD 102.
Resumo:
An investigation was made into the nature and control of the annual reproductive cycle of the dace, Leuciscus leuciscus. It includes 1) a study of the natural reproductive cycle, 2) the use of Carp Pituitary Extract (CPE) to induce final maturation and ovulation in captive fish, 3) the effect of artificial light treatments on ovarian development and 4) the measurement of serum melatonin levels under different photoperiod regimes. Ovarian development was monitored by endocrinological data, notably serum cycles of 17-oestradiol (E2), testosterone (T), and calcium (as an index of vitellogenin), oocyte diameter, the gonadosomatic index and histological studies of the ovary. Under natural conditions, ovarian development can broadly be divided into 4 stages: 1) oogenesis which occurs immediately after spawning; 2) a primary growth phase (previtellogenic growth) prevalent between spawning and June; 3) a secondary growth phase (yolk vesicle plus vitellogenic growth) occurring between June and December and 4) final maturation and ovulation which occurs in mid-March. During the annual ovarian cycle, the sex steroids E2 and T showed two clear elevations. The first occurred initially in April followed by a rise in serum calcium levels. This subsequently initiated the appearance of yolk granules in the oocytes in June. The second rise occurred in September and levels were maintained until December, after which there was a decline in serum E2 levels. It is proposed that in the dace, high serum E2 levels between September and December were required to maintain vitellogenin production and therefore its uptake into the developing oocytes which occurred during this time, albeit at a slower rate than in the summer months. After December, prior to final maturation, whereas serum E2 and calcium levels declined, serum T levels remained elevated. In captivity, final maturation beyond the germinal vesicle migration stage failed to occur suggesting that the stimuli required for these events were absent. However ovulation could be induced by a single injection of CPE, which induced ovulation between 6 and 14 hours after treatment. Endocrine events associated with the artificial induction of spawning included a rise in serum levels of E2, T and the maturation inducing steroid 1720-dihydroxy progesterone. Photoperiodic manipulation demonstrated that whereas short or increasing daylengths were stimulatory to ovarian development, long days delayed development. Changes from long to short and constant short daylengths early in the reproductive cycle advanced maturation (up to 5 months), suggesting that the stimulus for ovarian development and maturation was a short day. However, experiments conducted later in the reproductive cycle demonstrated that only a simulated ambient photoperiod could induce final maturation. It is proposed therefore that under natural conditions the environmental stimulus for ovarian development and final maturation are short and increasing daylengths respectively. Further support that photoperiod is the dominant timing cue in this species was provided by the pattern of serum melatonin levels. Under different photoperiod treatments, serum melatonin, which is believed to be the chemical transducer of photoperiodic information (similar to other photoperiodic species) was elevated for the duration of the dark phase, indicating that the dace at least has the ability to `measure' changes in daylength.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
This work was carried out to verify the effect of a glyphosate-based herbicide on Jundia hormones (cortisol, 17 beta-estradiol and testosterone), oocyte and swim-up fry production. Earthen ponds containing Jundia females were contaminated with glyphosate (3.6 mg/L); blood samples were collected from eight females from each treatment immediately before, or at 1, 10, 20 30 and 40 days following contamination. A typical post-stress rise in cortisol levels was observed at the 20th and 40th days following exposure to glyphosate. At the 40th day, 17 beta-estradiol was decreased in the exposed females. A similar number of oocytes were stripped out from females from both groups, however, a lower number of viable swim-up fry were obtained from the herbicide exposed females, which also had a higher liver-somatic index (LSI). The results indicate that the presence of glyphosate in water was deleterious to Rhamdia quelen reproduction, altering steroid profiles and egg viability. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Chronic telogen effluvium (CTE), a poorly understood condition, can be confused with or may be a prodrome to female pattern hair loss (FPHL). The pathogenesis of both is related to follicle cycle shortening and possibly to blood supply changes. To analyze a number of histomorphometric and immunohistochemical findings through vascular endothelial growth factor (VEGF), Ki-67, and CD31 immunostaining in scalp biopsies of 20 patients with CTE, 17 patients with mild FPHL and 9 controls. Ki-67 index and VEGF optical density were analyzed at the follicular outer sheath using ImageJ software. CD31 microvessel density was assessed by a Chalkley grid. Significant follicle miniaturization and higher density of nonanagen follicles were found in FPHL, compared with patients with CTE and controls. Ki-67+ index correlated positively with FPHL histological features. The FPHL group showed the highest VEGF optical density, followed by the CTE and control groups. No differences were found in CD31 microvessel density between the three groups. Histomorphometric results establish CTE as a distinct disorder, separate from FPHL from its outset. Its pathogenic mechanisms are also distinct. These findings support the proposed mechanism of 'immediate telogen release' for CTE, leading to cycle synchronization. For FPHL, accelerated anagen follicular mitotic rates and, thus, higher Ki-67 and VEGF values, would leave less time for differentiation, resulting in hair miniaturization.
Resumo:
Mating is an energy demanding process, imposing risks to physical injuries, pathogen infection and predation. Nevertheless, repeated and multiple mating are widespread even in insect species where nuptial gifts are not involved. The effects of repeated mating, by the same male, are examined on the reproductive performance of female Southern green stink bug Nezara viridula (L.). Fecundity is reduced in females mated three or four times, although there is increased longevity. Females mated once or twice produce more egg clusters and concentrate egg-laying activity in the early part of adult life, whereas those mating more often lay eggs throughout the life span, with fewer egg clusters. Although fecundity is negatively affected by the number of matings, egg fertility remains unaffected.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The reproductive system of many female Therevidae has a sac-like structure associated with the spermathecae. This structure, termed the spermathecal sac, has not been recorded previously from any other Diptera and appears unique to certain members of the Therevidae. There is enormous variety in spermathecal sac size and shape, with greatest development in the Australasian Therevidae. A histological examination of the reproductive system of two;Australian therevids, Agapophytus albobasalis Mann and Ectinorhynchus variabilis (Macquart) (Diptera: Asiloidea), reveals that the spermathecal sacs are cuticle-lined and that the intima is frequently highly folded. In some mated individuals, sperm was found within the spermathecal sac, suggesting that sperm and perhaps male accessory gland material is deposited there during copulation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We showed in 1988 that there are two strains of Chlamydia psittaci which infect the koala (Phascolarctos cinereus). In order to further investigate the role of these chlamydial strains in pathogenesis, we have attempted to identify genes of koala type I strain chlamydial which are involved in the immunogenic response, Transformation of Escherichia coli with a plasmid containing a 6.3-kb fragment (pKOC-10) of C. psittaci DNA caused the appearance of a specific chlamydial lipopolysaccharide (LPS) epitope on the host strain. The smallest DNA fragment capable of inducing the expression of chlamydial LPS was an Xbal fragment, 2.4 kb in size (pKOC-5). DNA sequence analysis of the complete fragment revealed regions of high identity, at the amino acid level, to the gseA genes of C. pneomoniae, C. psittaci 6BC and C. trachomatis, and the kdtA gene of E. coli which code for transferases catalysing the addition of 3-deoxy-D-manno-octulosonic acid (Kdo) residues to lipid A. Two open reading frames (ORFs) of 1,314 and 501 nucleotides in size, within the 2.4-kb fragment, were evident, and mRNA species corresponding to these ORFs were detected by Northern analysis. Both ORF1 and ORF2 are required for the appearance of chlamydia-specific LPS on the surface of recombinant E. coli.
Resumo:
Because of the advent of a new influenza A H1N1. strain, many countries have begun mass immunisation programmes. Awareness of the background rates of possible adverse events will be a crucial part of assessment of possible vaccine safety concerns and will help to separate legitimate safety concerns from events that are temporally associated with but not caused by vaccination. We identified background rates of selected medical events for several countries. Rates of disease events varied by age, sex, method of ascertainment, and geography. Highly visible health conditions, such as Guillain-Barre syndrome, spontaneous abortion, or even death, will occur in coincident temporal association with novel influenza vaccination. On the basis of the reviewed data, if a cohort of 10 million individuals was vaccinated in the UK, 21.5 cases of Guillain-Barre syndrome and 5.75 cases of sudden death would be expected to occur within 6 weeks of vaccination as coincident background cases. In female vaccinees in the USA, 86.3 cases of optic neuritis per 10 million population would be expected within 6 weeks of vaccination. 397 per 1 million vaccinated pregnant women would be predicted to have a spontaneous abortion within 1 day of vaccination.