954 resultados para Chitosan. Reductive alkylation. One-pot method. Solubility. PH-responsive. Dynamic light scattering
Resumo:
Introduction: Alkalinization potential is a fundamental property of endodontic epoxy-based cements containing calcium hydroxide. Studies have shown discrepant pH results for same materials at different evaluation periods. A possible reason accounting for these differences may be the assessment procedures. Objective: To evaluate the pH value of an epoxy-based cement (Sealer 26) in different periods of analysis, using two assessment methods. Material and methods: Sealer 26 was manipulated and immediately placed into polyethylene tubes (n=10, each group) and immersed in distilled water. In G1, the tubes were kept in the same water during all experiment; and in G2, the tubes were removed and placed into another flask with an equal amount of water after the pH evaluation. The pH of these solutions was measured at 24 hours, 7, 14 and 28 days. Analysis were made within the same group according to the experimental periods and between groups in each experimental period. Data were submitted to ANOVA (α = 5%) and t test, respectively. Results: For G1 and G2, all periods showed different pH values (p < 0.05), except between 14 and 28 days (p > 0.05) and between 7 and 14 days (p > 0.05), respectively. In each period, no significant differences were observed between the groups. Conclusion: The method to obtain the pH values in different experimental periods no interfered in the final results. However, difference was observed when the results were analyzed at same group.
Resumo:
The hydrolysis of pyridoxalrhodanine in a basic medium containing the dimethylthallium(III) cation afforded the compound [TlMe2(L)]center dot H2O (1.H2O) [HL = 5-(hydroxymethyl)-8-methyl-3-thiol-7-azacoumarin]. This compound was characterized in solid state by IR spectroscopy and in solution by H-1 and C-13{H-1} NMR spectrometry. X-ray diffraction showed that the crystal consists of associated TlMe2(L) units and hydrogen bonded water molecules. The L- anion is bound to the metal mainly by a bridging S atom [Tl-S = 2.9458(18) angstrom; 2.9616(16) angstrom], although secondary interactions through O atoms (Tl-O: 2.861(5); 2.900(5) angstrom)] are also present. The longer Tl-O interaction and the hydrogen bonds of the water molecules give rise to a tridimensional polymeric structure. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A very fast, easy and efficient synthesis is described for a novel and biologically important class of 1,4-disubstituted-4-(5-pyrrolidin-2-one)-1,2,3-triazoles by an ultrasound-assisted one-pot, three-step click reaction sequence of 5-[(trimethylsilyl)ethynyl]pyrrolidin-2-one with organic azides mediated by catalytic Cu-I salts.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 °C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 °C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (Mp), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 degrees C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 degrees C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (M-p), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).
Polymerization of Styrene and Cyclization to Macrocyclic Polystyrene in a One-Pot, Two-Step Sequence
Resumo:
Dibrominated polystyrene (BrPStBr) was produced by atom transfer radical polymerization (ATRP) at 80 degrees C, using the bifunctional initiator benzal bromide to afford the telechelic precursor. The ATRP reaction was stopped around 40% monomer conversion and directly converted into an radical trap-assisted atom transfer radical coupling (RTA-ATRC) reaction by lowering the temperature to 50 degrees C, and adding the radical trap 2-methyl-2-nitrosopropane (MNP) along with additional catalyst, reducing agent, and ligand to match ATRC-type reaction conditions. In an attempt to induce intramolecular coupling, rather than solely intermolecular coupling and elongation, the total reaction volume was increased by the addition of varying amounts of THF. Cyclization, along with intermolecular coupling and elongation, occurred in all cases, with the extent of ring closure a function of the total reaction volume. The cyclic portion of the coupled product was found to have a (G) value around 0.8 by GPC analysis, consistent with the reduction in hydrodynamic volume of a cyclic polymer compared to its linear analog. Analysis of the sequence by H-1 NMR confirmed that propagation was suppressed nearly completely during the RTA-ATRC phase, with percent monomer conversion remaining constant after the ATRP phase. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A regioselective approach for the synthesis of substituted naphthofurans and dibenzofurans has been demonstrated through a ring transformation reaction of suitably functionalized 2H-pyran-2-ones by reaction with 6,7-dihydro-5H-benzofuran-4-one and 7-methoxybenzofuran-3-one, respectively in high yields. The novelty of the procedure lies in the creation of an aromatic ring transformed by 2H-pyran-2-one involving the –COCH2- moiety of a cyclic ketone.
Resumo:
Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is the major psychoactive cannabinoid in hemp (Cannabis sativa L.) and responsible for many of the pharmacological effects mediated via cannabinoid receptors. Despite being the major cannabinoid scaffold in nature, Δ(9)-THC double bond isomers remain poorly studied. The chemical scaffold of tetrahydrocannabinol can be assembled from the condensation of distinctly substituted phenols and monoterpenes. Here we explored a microwave-assisted one pot heterogeneous synthesis of Δ(3)-THC from orcinol (1a) and pulegone (2). Four Δ(3)-THC analogues and corresponding Δ(4a)-tetrahydroxanthenes (Δ(4a)-THXs) were synthesized regioselectively and showed differential binding affinities for CB1 and CB2 cannabinoid receptors. Here we report for the first time the CB1 receptor binding of Δ(3)-THC, revealing a more potent receptor binding affinity for the (S)-(-) isomer (hCB1Ki = 5 nM) compared to the (R)-(+) isomer (hCB1Ki = 29 nM). Like Δ(9)-THC, also Δ(3)-THC analogues are partial agonists at CB receptors as indicated by [(35)S]GTPγS binding assays. Interestingly, the THC structural isomers Δ(4a)-THXs showed selective binding and partial agonism at CB2 receptors, revealing a simple non-natural natural product-derived scaffold for novel CB2 ligands.
Resumo:
A rapid one-pot synthesis of 3-alkyl-5-[(Z)-arylmethylidene]-1,3-thiazolidine-2,4-dionesis described that occurs in recyclable ionic liquid [bmim]PF6 (1-butyl-3-methylimidazolium hexafluorophosphate).Significant rate enhancement and good selectivity have been observed.
Resumo:
Here we describe a simple route to creating conformal sulphated zirconia monolayers throughout an SBA-15 architecture that confers efficient acid-catalysed one-pot conversion of glucose to ethyl levulinate.
Resumo:
We report an efficient one-pot conversion of glycerol (GLY) to methyl lactate (MLACT) in methanol in good yields (73 % at 95 % GLY conversion) by using Au nanoparticles on commercially available ultra-stable zeolite-Y (USY) as the catalyst (160 °C, air, 47 bar pressure, 0.25 M GLY, GLY-to-Au mol ratio of 1407, 10 h). The best results were obtained with zeolite USY-600, a catalyst that has both Lewis and Brønsted sites. This methodology provides a direct chemo-catalytic route for the synthesis of MLACT from GLY. MLACT is stable under the reaction conditions, and the Au/USY catalyst was recycled without a decrease in the activity and selectivity. From glycerol to green building blocks and solvents! An efficient, base-free conversion of glycerol to methyl lactate in methanol is reported, achieving good yields (73 % at 95 % glycerol conversion) using Au/ultra-stable zeolite-Y (USY) as the catalyst and environmentally benign oxygen as the oxidant by combining two separate reaction steps efficiently in a one pot procedure. The Au/USY catalyst can be recycled without a decrease in the activity and selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.