717 resultados para China, Capital structure, Dynamic panel data models, Listed property company
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.
Resumo:
Objectives Demonstrate the application of decision trees – classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs) – to understand structure in missing data. Setting Data taken from employees at three different industry sites in Australia. Participants 7915 observations were included. Materials and Methods The approach was evaluated using an occupational health dataset comprising results of questionnaires, medical tests, and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results CART and BRT models were effective in highlighting a missingness structure in the data, related to the Type of data (medical or environmental), the site in which it was collected, the number of visits and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured compared to structured missingness. Discussion Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusion Researchers are encouraged to use CART and BRT models to explore and understand missing data.
Resumo:
Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.
Resumo:
The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
Resumo:
In data mining, an important goal is to generate an abstraction of the data. Such an abstraction helps in reducing the space and search time requirements of the overall decision making process. Further, it is important that the abstraction is generated from the data with a small number of disk scans. We propose a novel data structure, pattern count tree (PC-tree), that can be built by scanning the database only once. PC-tree is a minimal size complete representation of the data and it can be used to represent dynamic databases with the help of knowledge that is either static or changing. We show that further compactness can be achieved by constructing the PC-tree on segmented patterns. We exploit the flexibility offered by rough sets to realize a rough PC-tree and use it for efficient and effective rough classification. To be consistent with the sizes of the branches of the PC-tree, we use upper and lower approximations of feature sets in a manner different from the conventional rough set theory. We conducted experiments using the proposed classification scheme on a large-scale hand-written digit data set. We use the experimental results to establish the efficacy of the proposed approach. (C) 2002 Elsevier Science B.V. All rights reserved.
Bayesian parameter identification in dynamic state space models using modified measurement equations
Resumo:
When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
[ES] Durante la última década surge un interés por el estudio de la estructura de propiedad como elemento determinante de la diversificación. Sin embargo, existe una carencia de investigaciones que analicen la influencia de la naturaleza del último propietario en el nivel y tipo de diversificación. Por ello, el objeto del presente trabajo es analizar las estrategias de diversificación empleadas por los grandes grupos empresariales españoles cuya empresa matriz cotiza en los mercados de valores, estudiando las diferencias existentes entre grupos familiares y no familiares, y considerando en estos últimos la naturaleza del último propietario. Se parte de una muestra de noventa y nueve grupos empresariales, donde se identifican las compañías que constituyen el grupo empresarial, siendo empleadas como metodologías econométricas los modelos logísticos binomiales y los modelos datos panel. Los resultados muestran como la naturaleza familiar del grupo influye positivamente en la especialización y en el empleo de estrategias de diversificación relacionada, y negativamente en el empleo de estrategias de diversificación no relacionada. Los grupos familiares difieren en mayor medida de aquellos grupos no familiares donde no existe un accionista de referencia que pueda ejercer el control efectivo del grupo y la dispersión de la propiedad es mayor, los denominados grupos sin control efectivo . La investigación permite profundizar en el análisis de las diferencias existentes entre grupos familiares y no familiares, y más concretamente en el ámbito de las estrategias de crecimiento, considerando la naturaleza del último propietario de los grupos no familiares.
Resumo:
11-year satellite altimeter sea surface height (SSH) anomaly data from January 1993 to December 2003 are used to present the dominant spatial patterns and temporal variations of the South China Sea (SCS) surface circulation through Empirical Orthogonal Function (EOF) analysis. The first three EOF modes show the obvious seasonal variations of SSH in the SCS. EOF mode one is generally characterized by a basin-wide circulation. Mode two describes the double-cell basin scale circulation structure. The two cells were located off west of the Luzon Island and southeast of Vietnam, respectively. EOF mode three presents the mesoscale eddy structure in the western SCS, which develops into a strong cyclonic eddy rapidly from July to September. EOF mode one and mode three are also embedded with interannual signals, indicating that the SCS surface circulation variation is influenced by El Nino events prominently. The strong El Nino of 1997/98 obviously changed the SCS circulation structure. This study also shows that there existed a series of mesoscale eddies in the western SCS, and their temporal variation indicates intra-seasonal and interannual signals.
Resumo:
In this paper the claim for the market for a new business management to ensure the presence of women in decision -making to respond to new social needs addressed. Thus, this paper analyzes the influence of gender diversity of the directors on the profitability and the level of debt for a sample of 5,199 Spanish cooperatives. Unlike capitalist societies, these organizations have a number of peculiarities in their government, and that the partners are themselves major time, agents and customers. The study focuses on the Spanish context, where there is an open debate on the importance of women's business management, as in other countries, driven by the proliferation of legislation on gender equality, being, in addition, Spain, the pioneer in having specific legislation on Social Economy. The results show that cooperatives with greater female representation in theirs Boards have higher profitability. On the other hand, those Boards with a higher percentage of women show a lower level of indebtedness.
Resumo:
This paper investigates the performance of the tests proposed by Hadri and by Hadri and Larsson for testing for stationarity in heterogeneous panel data under model misspecification. The panel tests are based on the well known KPSS test (cf. Kwiatkowski et al.) which considers two models: stationarity around a deterministic level and stationarity around a deterministic trend. There is no study, as far as we know, on the statistical properties of the test when the wrong model is used. We also consider the case of the simultaneous presence of the two types of models in a panel. We employ two asymptotics: joint asymptotic, T, N -> infinity simultaneously, and T fixed and N allowed to grow indefinitely. We use Monte Carlo experiments to investigate the effects of misspecification in sample sizes usually used in practice. The results indicate that the assumption that T is fixed rather than asymptotic leads to tests that have less size distortions, particularly for relatively small T with large N panels (micro-panels) than the tests derived under the joint asymptotics. We also find that choosing a deterministic trend when a deterministic level is true does not significantly affect the properties of the test. But, choosing a deterministic level when a deterministic trend is true leads to extreme over-rejections. Therefore, when unsure about which model has generated the data, it is suggested to use the model with a trend. We also propose a new statistic for testing for stationarity in mixed panel data where the mixture is known. The performance of this new test is very good for both cases of T asymptotic and T fixed. The statistic for T asymptotic is slightly undersized when T is very small (
Resumo:
This paper demonstrates the significance of culture in examining the relationshipbetween democratic capital and environmental performance.The aim is to examine the relationship among scores on the Environmental Performance Index and the two dimensions of cross cultural variation suggested by Ronald Inglehart and Christian Welzel. Significantional interrelationships among democracy, cultural and environmental sustaintability measures could be found, following the regression results. Firstly, higher levels of democratic capital stock are associated with better environmental performance. Secondly importance to distinguish between cultural groups could be confirmed.
Resumo:
The study investigates the impact of the managerial overconfidence bias on the capital structure of a sample of 78 firms from Chile, Peru and Colombia, during the years 1996-2014. We infer that there is a positive relation between the leverage ratio and a) the overconfidence; b) the experience and c) the male gender of the executive. Overconfidence is measured according to the status of the CEO (entrepreneur or not-entrepreneur) and the hypotheses are tested through dynamic panel data model. The empirical results show a highly significant positive correlation between overconfidence and leverage ratio and between gender and leverage ratio while, in contrast, the relation between experience and leverage ratio is negative.
Resumo:
A new formulation of a pose refinement technique using ``active'' models is described. An error term derived from the detection of image derivatives close to an initial object hypothesis is linearised and solved by least squares. The method is particularly well suited to problems involving external geometrical constraints (such as the ground-plane constraint). We show that the method is able to recover both the pose of a rigid model, and the structure of a deformable model. We report an initial assessment of the performance and cost of pose and structure recovery using the active model in comparison with our previously reported ``passive'' model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence.
Resumo:
The farm-level success of Bt-cotton in developing countries is well documented. However, the literature has only recently begun to recognise the importance of accounting for the effects of the technology on production risk, in addition to the mean effect estimated by previous studies. The risk effects of the technology are likely very important to smallholder farmers in the developing world due to their risk-aversion. We advance the emergent literature on Bt-cotton and production risk by using panel data methods to control for possible endogeneity of Bt-adoption. We estimate two models, the first a fixed-effects version of the Just and Pope model with additive individual and time effects, and the second a variation of the model in which inputs and variety choice are allowed to affect the variance of the time effect and its correlation with the idiosyncratic error. The models are applied to panel data on smallholder cotton production in India and South Africa. Our results suggest a risk-reducing effect of Bt-cotton in India, but an inconclusive picture in South Africa.
Resumo:
The principle aim of this research is to elucidate the factors driving the total rate of return of non-listed funds using a panel data analytical framework. In line with previous results, we find that core funds exhibit lower yet more stable returns than value-added and, in particular, opportunistic funds, both cross-sectionally and over time. After taking into account overall market exposure, as measured by weighted market returns, the excess returns of value-added and opportunity funds are likely to stem from: high leverage, high exposure to development, active asset management and investment in specialized property sectors. A random effects estimation of the panel data model largely confirms the findings obtained from the fixed effects model. Again, the country and sector property effect shows the strongest significance in explaining total returns. The stock market variable is negative which hints at switching effects between competing asset classes. For opportunity funds, on average, the returns attributable to gearing are three times higher than those for value added funds and over five times higher than for core funds. Overall, there is relatively strong evidence indicating that country and sector allocation, style, gearing and fund size combinations impact on the performance of unlisted real estate funds.