983 resultados para Chesapeake-Leopard Affair, 1807.
Resumo:
Organisms were collected on test panels, six inch lengths of dressed two by four inch pine, suspended in the water in a vertical position as described by Turner (1947). The panels were usually located at some convenient structure such as a dock-piling or sea-wall. Except where otherwise indicated by the data, the samples were collected from each station once a month between May 1950 and May 1953. During the three year period, seven hundred and nineteen panels were submerged in Chesapeake Bay. Approximately 14,000 organisms were encountered on these panels of which 20% or approximately 3,000 organisms could be identified from the dried pallets. Preliminary notes on the extent of fouling were made in the field after which the samples were removed to the laboratory for further study.
Resumo:
The Chesapeake Biological Laboratory is a research and study center founded to accelerate the acquisition of knowledge through the gathering and dissemination of facts to the end that there may be a fuller appreciation of nature.
Resumo:
Substantial progress was made in 1938 both in respect to additions made in the physical plant and to the problems effectively pursued by an energetic staff.
Resumo:
Reports of high mortality resulting from the impoundment of crabs (Callinectes sapidus) during the preshedding period, to produce soft crabs, have been current in Maryland and Virginia for many years. The death rate of crabs on floats has been estimated by certain of the operators to run as high as 86% at Cape Charles, and to figures nearly as high at Crisfield and elsewhere during one season of the year. A study of this mortality and the factors influencing it have been in progress at the Chesapeake Biological Laboratory for two seasons.
Resumo:
At this time, four additional species, unreported by Wilson [1932], can be added to the list of those species to be found within the limits of the bay. These are Acartia tonsa Dana, Cyclops vernalis Fischer, Diaptomus spatulocrenatus Pearse, and Paracalanus crassirostris Dahl var. nudus nov. The specimens from which identifications were made were collected by means of Clarke-Bumpus nets, in use on the motor ship "Mahatru."
Resumo:
The study here reported is a survey of the most common non-parasitic nematode families of Chesapeake Bay, Maryland, with descriptions and figures, so that ecological workers and students of invertebrate zoology may be encouraged not to pass over this highly interesting and abundant invertebrate phylum. This survey is not a complete account of the free-living nematode population of the Bay, however, since only the middle section of the Bay was sampled and since the collections were not made systematically throughout the year. The physical and chemical factors of Chesapeake Bay may be found in several publications of the Chesapeake Biological Laboratory, Solomons Island, Maryland, and in the records of the Chesapeake Bay Institute, Annapolis, Maryland.
Resumo:
A study of possible causes for extensive mortality of oysters in the Upper Chesapeake Bay was taken on by year-round monitoring of conditions during a two-year period.
Resumo:
The assessment of emerging risks in the aquatic environment is a major concern and focus of environmental science (Daughton and Ternes, 1999). One significant class of chemicals that has received relatively little attention until recently are the human use pharmaceuticals. In 2004, an estimated 2.6 billion prescriptions were written for the top 300 pharmaceuticals in the U.S. (RxList, 2005). Mellon et al. (2001) estimated that 1.4 million kg of antimicrobials are used in human medicine every year. The use of pharmaceuticals is also estimated to be on par with agrochemicals (Daughton and Ternes, 1999). Unlike agrochemicals (e.g., pesticides) which tend to be delivered to the environment in seasonal pulses, pharmaceuticals are continuously released through the use/excretion and disposal of these chemicals, which may produce the same exposure potential as truly persistent pollutants. Human use pharmaceuticals can enter the aquatic environment through a number of pathways, although the main one is thought to be via ingestion and subsequent excretion by humans (Thomas and Hilton, 2004). Unused pharmaceuticals are typically flushed down the drain or wind up in landfills (Jones et al. 2001).
Resumo:
In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.
Resumo:
The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.
Resumo:
Vibrio vulnificus is a gram-negative pathogenic bacterium endemic to coastal waters worldwide, and a leading cause of seafood related mortality. Because of human health concerns, understanding the ecology of the species and potentially predicting its distribution is of great importance. We evaluated and applied a previously published qPCR assay to water samples (n = 235) collected from the main-stem of the Chesapeake Bay (2007 – 2008) by Maryland and Virginia State water quality monitoring programs. Results confirmed strong relationships between the likelihood of Vibrio vulnificus presence and both temperature and salinity that were used to develop a logistic regression model. The habitat model demonstrated a high degree of concordance (93%), and robustness as subsequent bootstrapping (n=1000) did not change model output (P > 0.05). We forced this empirical habitat model with temperature and salinity predictions generated by a regional hydrodynamic modeling system to demonstrate its utility in future pathogen forecasting efforts in the Chesapeake Bay.
Resumo:
Moving ecosystem modeling from research to applications and operations has direct management relevance and will be integral to achieving the water quality and living resource goals of the 2010 Chesapeake Bay Executive Order. Yet despite decades of ecosystem modeling efforts of linking climate to water quality, plankton and fish, ecological models are rarely taken to the operational phase. In an effort to promote operational ecosystem modeling and ecological forecasting in Chesapeake Bay, a meeting was convened on this topic at the 2010 Chesapeake Modeling Symposium (May, 10-11). These presentations show that tremendous progress has been made over the last five years toward the development of operational ecological forecasting models, and that efforts in Chesapeake Bay are leading the way nationally. Ecological forecasts predict the impacts of chemical, biological, and physical changes on ecosystems, ecosystem components, and people. They have great potential to educate and inform not only ecosystem management, but also the outlook and opinion of the general public, for whom we manage coastal ecosystems. In the context of the Chesapeake Bay Executive Order, ecological forecasting can be used to identify favorable restoration sites, predict which sites and species will be viable under various climate scenarios, and predict the impact of a restoration project on water quality.
Resumo:
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.
Resumo:
On 10 July 1999, vertebrae bearing an oxytetracycline (OTC) time mark were retrieved from a tagged leopard shark (Triakis semifasciata) recaptured in San Francisco Bay, CA, after being at liberty for almost 20 years. An additional long-term leopard shark tag return was received in June 2001, for which growth information (but not vertebrae) was obtained. The first recapture is significant in that it represents the longest at-liberty period for an age-validated (OTC-injected) shark, extends and completes age validation for this species, spanning all age classes up to its estimated average maximum age, and provides an example of the persistence of the OTC time mark in an elasmobranch at liberty for almost 20 years. The recaptured leopard shark made in 2001 also provides valuable information on long-term growth from time of release to time of recapture. Findings are documented here so that other researchers are aware that validation is complete for this species, to present pertinent evidence of considerable interannual variability in growth in this species, and to report observations on processing difficulties relating to the ephemeral nature of the 20-yr-old OTC mark.