992 resultados para Chemical weathering.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study is to clarify the sedimentary history and chemical characteristics of clay minerals found in sediments deposited in the distal part of the Bengal Fan since the Himalayas were uplifted 17 m.y. ago. A total of seventy-eight samples were collected from three drilled cores which were to be used for the clay mineral analyses by means of XRD and ATEM. The results obtained from the analyses show that individual clay mineral species in the sediment samples at each site have similar features when the samples are of the same age, whereas these species have different features in samples of differing geological ages. Detrital clay minerals such as illite and chlorite were deposited in greater amounts than kaolinite and smectite during the Early to Middle Miocene. This means that the Himalayan uplift was vigorous at least until the Middle Miocene. In the Pliocene chemical weathering was more prevalent so that instead, in the distal part of the Bengal Fan, kaolinite shows the highest concentrations. This would accord with weaker uplift in the Himalayas. In the Pleistocene period, vigorous Himalayan uplift is characterized by illite-rich sediment in place of kaolinite. In the Holocene, smectite shows the highest concentration in place of the illite and kaolinite which were the predominant clay minerals of the earlier periods. Increasing smectite concentration suggests the Himalayan uplift to have been stable after the Pleistocene period. The smectite analyzed here is found to be dioctahedral Fe-beidellite, and it originated largely from the augite-basalt on the Indian Deccan Traps. The tri-octahedral chlorite is subdivided into three sub-species, an Fe-type, a Mg-type and an intermediate type. The mica clay mineral can be identified as di-octahedral illite which is rich in potassium. The chemical composition and morphology of each clay mineral appears to exhibit no change with burial depth in the sedimentary columns. This implies that there was no systematic transformation of clay minerals with time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Both the olivine-hearing tholeiite basalts of the island and the brown soils which have developed on the basalts contain 2-20% of a swelling clay mineral. It emerges from chemical, optical, X-ray diffraction and differential thermal analytical studies that this clay mineral is a Mg-rich, Fe2+ and AI-bearing tri-octahedral smectite, e. g. Mg-saponite. Due to petrographic and crystal chemical properties the saponite should have been formed by hydrothermal alteration of the primary Mg-Fe-minerals olivine and clinopyroxene. The soils consist of plagioclase, saponite and goethite which has been formed by chemical weathering within the soils. In the uppermost layer some of the soils contain humic substances and phosphatic material, the latter may be related to the recent production of guano.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microorganisms modify rates and mechanisms of chemical and physical weathering and clay growth, thus playing fundamental roles in soil and sediment formation. Because processes in soils are inherently complex and difficult to study, we employ a model based on the lichen–mineral system to identify the fundamental interactions. Fixed carbon released by the photosynthetic symbiont stimulates growth of fungi and other microorganisms. These microorganisms directly or indirectly induce mineral disaggregation, hydration, dissolution, and secondary mineral formation. Model polysaccharides were used to investigate direct mediation of mineral surface reactions by extracellular polymers. Polysaccharides can suppress or enhance rates of chemical weathering by up to three orders of magnitude, depending on the pH, mineral surface structure and composition, and organic functional groups. Mg, Mn, Fe, Al, and Si are redistributed into clays that strongly adsorb ions. Microbes contribute to dissolution of insoluble secondary phosphates, possibly via release of organic acids. These reactions significantly impact soil fertility. Below fungi–mineral interfaces, mineral surfaces are exposed to dissolved metabolic byproducts. Through this indirect process, microorganisms can accelerate mineral dissolution, leading to enhanced porosity and permeability and colonization by microbial communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated potential palaeoclimate proxies provided by rare earth element (REE) geochemistry in speleothems and in clay mineralogy of cave sediments. Speleothem and sediment samples were collected from a series of cave fill deposits that occurred with rich vertebrate fossil assemblages in and around Mount Etna National Park, Rockhampton (central coastal Queensland). The fossil deposits range from Plio- Pleistocene to Holocene in age (based on uranium/thorium dating) and appear to represent depositional environments ranging from enclosed rainforest to semi-arid grasslands. Therefore, the Mount Etna cave deposits offer the perfect opportunity to test new palaeoclimate tools as they include deposits that span a known significant climate shift on the basis of independent faunal data. The first section of this study investigates the REE distribution of the host limestone to provide baseline geochemistry for subsequent speleothem investigations. The Devonian Mount Etna Beds were found to be more complex than previous literature had documented. The studied limestone massif is overturned, highly recrystallised in parts and consists of numerous allochthonous blocks with different spatial orientations. Despite the complex geologic history of the Mount Etna Beds, Devonian seawater-like REE patterns were recovered in some parts of the limestone and baseline geochemistry was determined for the bulk limestone for comparison with speleothem REE patterns. The second part of the study focused on REE distribution in the karst system and the palaeoclimatic implications of such records. It was found that REEs have a high affinity for calcite surfaces and that REE distributions in speleothems vary between growth bands much more than along growth bands, thus providing a temporal record that may relate to environmental changes. The morphology of different speleothems (i.e., stalactites, stalagmites, and flowstones) has little bearing on REE distributions provided they are not contaminated with particulate fines. Thus, baseline knowledge developed in the study suggested that speleothems were basically comparable for assessing palaeoclimatically controlled variations in REE distributions. Speleothems from rainforest and semi-arid phases were compared and it was found that there are definable differences in REE distribution that can be attributed to climate. In particular during semiarid phases, total REE concentration decreased, LREE became more depleted, Y/Ho increased, La anomalies were more positive and Ce anomalies were more negative. This may reflect more soil development during rainforest phases and more organic particles and colloids, which are known to transport REEs, in karst waters. However, on a finer temporal scale (i.e. growth bands) within speleothems from the same climate regime, no difference was seen. It is suggested that this may be due to inadequate time for soil development changes on the time frames represented by differences in growth band density. The third part of the study was a reconnaissance investigation focused on mineralogy of clay cave sediments, illite/kaolinite ratios in particular, and the potential palaeoclimatic implications of such records. Although the sample distribution was not optimal, the preliminary results suggest that the illite/kaolinite ratio increased during cold and dry intervals, consistent with decreased chemical weathering during those times. The study provides a basic framework for future studies at differing latitudes to further constrain the parameters of the proxy. The identification of such a proxy recorded in cave sediment has broad implications as clay ratios could potentially provide a basic local climate proxy in the absence of fossil faunas and speleothem material. This study suggests that REEs distributed in speleothems may provide information about water throughput and soil formation, thus providing a potential palaeoclimate proxy. It highlights the importance of understanding the host limestone geochemistry and broadens the distribution and potential number of cave field sites as palaeoclimate information no longer relies solely on the presence of fossil faunas and or speleothems. However, additional research is required to better understand the temporal scales required for the proxies to be recognised.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study is to propose a method to assess the long-term chemical weathering mass balance for a regolith developed on a heterogeneous silicate substratum at the small experimental watershed scale by adopting a combined approach of geophysics, geochemistry and mineralogy. We initiated in 2003 a study of the steep climatic gradient and associated geomorphologic features of the edge of the rifted continental passive margin of the Karnataka Plateau, Peninsular India. In the transition sub-humid zone of this climatic gradient we have studied the pristine forested small watershed of Mule Hole (4.3 km(2)) mainly developed on gneissic substratum. Mineralogical, geochemical and geophysical investigations were carried out (i) in characteristic red soil profiles and (ii) in boreholes up to 60 m deep in order to take into account the effect of the weathering mantle roots. In addition, 12 Electrical Resistivity Tomography profiles (ERT), with an investigation depth of 30 m, were generated at the watershed scale to spatially characterize the information gathered in boreholes and soil profiles. The location of the ERT profiles is based on a previous electromagnetic survey, with an investigation depth of about 6 m. The soil cover thickness was inferred from the electromagnetic survey combined with a geological/pedological survey. Taking into account the parent rock heterogeneity, the degree of weathering of each of the regolith samples has been defined using both the mineralogical composition and the geochemical indices (Loss on Ignition, Weathering Index of Parker, Chemical Index of Alteration). Comparing these indices with electrical resistivity logs, it has been found that a value of 400 Ohm m delineates clearly the parent rocks and the weathered materials, Then the 12 inverted ERT profiles were constrained with this value after verifying the uncertainty due to the inversion procedure. Synthetic models based on the field data were used for this purpose. The estimated average regolith thickness at the watershed scale is 17.2 m, including 15.2 m of saprolite and 2 m of soil cover. Finally, using these estimations of the thicknesses, the long-term mass balance is calculated for the average gneiss-derived saprolite and red soil. In the saprolite, the open-system mass-transport function T indicates that all the major elements except Ca are depleted. The chlorite and biotite crystals, the chief sources for Mg (95%), Fe (84%), Mn (86%) and K (57%, biotite only), are the first to undergo weathering and the oligoclase crystals are relatively intact within the saprolite with a loss of only 18%. The Ca accumulation can be attributed to the precipitation of CaCO3 from the percolating solution due to the current and/or the paleoclimatic conditions. Overall, the most important losses occur for Si, Mg and Na with -286 x 10(6) mol/ha (62% of the total mass loss), -67 x 10(6) mol/ha (15% of the total mass loss) and -39 x 10(6) mol/ha (9% of the total mass loss), respectively. Al, Fe and K account for 7%, 4% and 3% of the total mass loss, respectively. In the red soil profiles, the open-system mass-transport functions point out that all major elements except Mn are depleted. Most of the oligoclase crystals have broken down with a loss of 90%. The most important losses occur for Si, Na and Mg with -55 x 10(6) mol/ha (47% of the total mass loss), -22 x 10(6) mol/ha (19% of the total mass loss) and -16 x 10(6) mol/ha (14% of the total mass loss), respectively. Ca, Al, K and Fe account for 8%, 6%, 4% and 2% of the total mass loss, respectively. Overall these findings confirm the immaturity of the saprolite at the watershed scale. The soil profiles are more evolved than saprolite but still contain primary minerals that can further undergo weathering and hence consume atmospheric CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Late Pliocene is thought to be characterized by the simultaneous intensification of both the East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM). However, the evolution of the EASM during the Pliocene remains still controversial and only little is known about the dynamics of the EASM during the Pliocene on orbital time scales. Here we use clay mineral assemblages in sediments from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) to obtain proxy records of past changes in the EASM climate during the Pliocene. Provenance analysis suggests that illite, chlorite and kaolinite originated mainly from the Mekong River drainage area. Smectite was derived mainly from the Indonesian islands. The kaolinite/illite ratio and the chemical index of alteration (CIA) of siliciclastic sediments allowed us to reconstruct the history of chemical weathering and physical erosion of the Mekong River drainage area and thus, the evolution of,the EASM during the Pliocene. Our clay minerals proxy data suggests a stronger EASM during the Early Pliocene than during the Late Pliocene. We propose that the long-term evolution of the EASM has been driven by global cooling rather than the uplift of the Tibetan Plateau. Spectral analysis of kaolinite/ illite ratio displays a set of strong periodicities at 100 ka, 30 ka, 28 ka, 25 ka, and 22 ka. with no clear obliquityrelated signal. Our study suggests that the Pliocene EASM intensity on orbital time scales is not only controlled by the Northern Hemisphere summer insolation, but also strongly influenced by equatorial Pacific ENSO-like ocean atmosphere dynamics. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Sanmen Gorge area is located in the southernmost margin of the Chinese Loess Plateau with well developed eolian deposit sequence for the past 2.6 Ma, providing a key site for further understanding of the evolution history of the East Asian monsoon since late Pliocene. This study attempted to characterize the stratigraphy and paleoclimate record of the loess-paleosol sequence in the Songjiadian section. The work involved includes systematic field investigation, paleomagnetic and rock magnetic analyses, grain size and major chemical composition analyses, and multiple proxy measurements of magnetic susceptibility, color reflectance and the ratio of CBD-dissolvable iron to the total iron (FeD/FeT). By comparisons of the Songjiadian section with well studied loess sections in the west of the Sanmen Gorge, the spatial variations of the East Asian monsoon was evaluated for some periods during which typical loess or paleosols developed. The following conclusions have been obtained. 1. Stratigraphic correlation and paleomagnetic result demonstrate that the loess-paleosol sequence in the Songjiadian section was accumulated from 2.6Ma, and is generally a complete and continuous loess sequence. However, notable differences from type loess sections have been identified for a few loess and paleosol units, featured by absence or anomalous thickness in the Songjiadian section. 2. Magnetic susceptibility and chromaticity records clearly reveal the loess-paleosol cycles, and indicate that the Sanmen Gorge area has been warmer and more humid than the Lingtai and Jingchuan sections in the western central Loess Plateau since the Early Pleistocene. 3. Grain size distribution patterns are typical of eolian dust, and show a great similarity between various units of loess and paleosols, and between the S32 and the underlying Red Clay through the Songjiadian profile, suggesting the eolian origin for the loess, paleosols and the Red Clay. 4. Comparison of the FeD/FeT curves from different loess sections indicates a stronger chemical weathering in the Songjiadian section and notable enhancement around 1800, 800 and 600 ka BP, implying the strengthening of the East Asian monsoon during these periods. In contrast, it was weakened at 1100 ka BP. Generally, the summer monsoon shows a gradually decreasing trend during the entire Pleostocene, but the spatial pattern typified by an increasing trend in weathering intensity from north to south remained the same. 5. The loess unit L9 in the Songjiadian section displays two geomagnetic field anomalies with the midpoint ages of 0.917 and 0.875 Ma respectively, with a segment of 12 ka. They are demonstrated to be equivalent to the Santa Rosa and Kamikatsura geomagnetic excursions. 6. Magnetite is the main magnetic carrier for both loess and paleosols. Maghemite concentration is higher in paleosols than in loess, and is an important carrier for the enhanced magnetic susceptibility in paleosols. Magnetic fabric analysis suggests a dominant N-S wind direction prevailing in the L9 and L15, while the summer winds were dominantly in NNE-SSW direction during the S8 period, notably differing from previous studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Taklamakan Desert, lying in the center Tarim Basin of sourthern Xinjiang, is the largest sand sea in China and well known in the world as its inclemency. For understanding the formation and evolution of the Taklamakan Desert, it is very important to identify the provenance of aeolian sediments in the extensive dune fields, but the opinions from earlier studies are quite different. In this study, we examined the major- and trace-element compositions, mineral compositions and grain-size distributions of some Quaternary aeolian and nonaeolian sediments collected from the Taklamakan Desert, together with the variation of chemical and mineralogical compositions of different grain-size fraction. At the same time, we also studied the chemistries of some natural water samples (river water and groundwater) with the items of TDS, pH, Alkalinity, conductivity and major cation and anion compositions. Our results of analysis show some significant opinions as follow: Most of the frequency-distribution curves of grain size of dune sand samples are simgle peak, but that of the river and lacustrine sediment are most double peak or multi-peak. The grain-size distribution of dunefield sand changed gradually from north to south with the major wind direction in large scale, but there are many differences in regional scale. The major, REE, trace element compositions and mineral compositions are very different among the coarse, fine fraction and bulk samples due to the influence of grain-size. Most of the fine fractions are geochemically homogenous, but the coarse fractions and bulk samples are heterogenous. All the surface and ground waters are limnetic or sub-salty, their chemical compositions are mainly controlled by rock-weathering and crystallization- evaporation processes, and mainly come from the evaporate, while the contributions of the carbonate and silicate are little, excluding the influence on oasis water by carbonate. The mineral compositions of selected samples are stable, mainly composed of the strongly resistant mineral types. The mineral maturity of them are more immature at whole compared with other sandy sediments in the world, and they have experienced less degree of chemical weathering and recycling, being lying in the early stage of continental weathering. Among these sediments, the river sediments are relatively primitive. The sources of these sediments are maybe mainly terrigenous, silicic and subaluminous/ metalunious rocks, such as the granodiorite and its metamorphic rock. The geochemical compositions of dunefield sand are similar with those of the river sediments and dune sands near the river way; There are not only the resemblances but also the differences on geochemistry and granularity between north and south dunesands; The sediments from same section have different age but same trace-element compositions; The sediments from the south edge of Tarim Basin are all somewhat geochemically similar with the palaeo-river-sediment on the south edge of studying area. The REE data support the idea that the south dunesands are a little older than the north dunesands, and the tectonic settings of source area are mainly active continental margin based on the major-element compositions, so they indicate that the sediment of Taklamakan Desert maybe come mainly from the rock-weathering production of north part of the Kunlun Mountains. Compared with the sands of other dune field in north of China, the sands of the Taklamakan Desert are distinct by REE composition, but similar with the Luochuan loess, center China, and the two sandy dusts of Beijing, eastern China.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical weathering intensity of loess deposits is largely determined by three factors: chemical weathering in source regions, grain size and post-depositional weathering. The third factor is influenced by climatic conditions such as precipitation and temperature, and the dust sedimentation rate in the area of deposition. Previous studies have shown that the (CaO+MgO+Na2O)/TiO2 ratio of decarbonated residue from loess is independent of grain size changes and thus is a reliable proxy for chemical weathering. However, the validity of (CaO+MgO+Na2O)/TiO2 to describe changes in monsoon intensity requires further study. In this study, 48 sections over the last glacial-interglacial cycle on the Chinese Loess Plateau were sampled, and the major elemental concentrations of 248 decarbonated residue samples were measured to investigate the utility of the (CaO+MgO+Na2O)/TiO2 ratio as a proxy for changes in monsoon intensity. Results show that the (CaO+MgO+Na2O)/TiO2 ratio, is relatively more sensitive to climate change than other indexes independent of grain size, and is not affected substantially by sedimentation rate. Assuming the weathering regime is relatively stable in the loess source regions, the (CaO+MgO+Na2O)/TiO2 ratio is a reliable proxy for the intensity of summer monsoon. A decreasing (CaO+MgO+Na2O)/TiO2 ratio from northwest to southeast both in loess and paleosols indicates that the Chinese Loess Plateau is in the control of the East Asian summer monsoon during both interglacial and glacial times. In addition, the spatial distributions of (CaO+MgO+Na2O)/TiO2 ratios show a greater north-south gradient during interglacial periods than during glacial periods. This may suggest that the spatial precipitation gradient, controlled by the summer monsoon, is steeper during interglacials than in glacials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Late Cenozoic has witnessed a series of climate-environmental change which ends with a transitional shift from greenhouse to icehouse conditions. In last two decades, scientists began to employ the tectonic uplift and its weathering effect to interpret the climatic changes during the late Cenozoic. However, this endeavor has partly been restricted by the lacking of regional and global chemical weathering data. The loess-red clay deposit in the Loess Plateau may record the weathering features of the detritus material from the wide range upwind of the Loess Plateau. Therefore geochemistry of the loess-plaeosol and red clay sequences may provide insights into the regional chemical weathering regime and the connection between the chemical weathering and the late Cenozoic climate-environmental change Here we selected 319 samples from the Baishui section near the Pingliang City, Gansu Province, and analyzed them with X-ray fluorescence. Based on the result, we reconstruct the chemical weathering history of the Baishui section since 6Ma. We chose CIA as the proxy for chemical weathering intensity. The CIA ratio in soil units is higher than in adjacent loess horizons, but lower than in the red clay, in good agreement with the field observation. The CIA ratios of the Baishui section correlates well with the global ice volume fluctuations, indicating that the global cooling may contribute a lot to the chemical weathering variations in Chinese Loess Plateau. There are at least 3 million-year time scale variations that can be identified in the chemical weathering intensity curve, i.e., between 3.3 to 2.1 Ma, 1.7 to 0.9 Ma and from 0.9Ma. We think these may reflect the combined effect of the tectonic uplift and ice sheets on monsoon intensity. Other time scale variations can be also observed. In the period between 2.4 and 0.8 Ma, the CIA record display the 400,000 years cycle, which may be resulted from the Tibetan uplift during the Pliocene-early Pleistocene which have significantly amplified the monsoon response sensitivity to the orbital-scale variations in insolation. From 1.2 Ma, the 100,000 years period became intensifying, and particularly after 0.8 Ma, the earlier monsoon response at 400,000 year periodicity was overwhelmed by the ice sheet forcing at 100,000 year periodicity. These may indicate that the expansions of the Northern Hemisphere ice sheets may have crossed a threshold, which enforce the monsoon responding at the 100,000 year periodicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loess-red clay deposit in the Loess Plateau, as large regions mixed in the dust depositional areas, may recorded the chemical weathering features and recycling of the detritus material of the earth’s surface from the wide range upwind of the Loess Plateau. And the loess-red clay sequence is rare information for recovering the continent's weathering history of Late Cenozoic, as it’s clear sense of age. The concentrations of elements in loess-red clay are largely affected by grain size. Therefore, we divided samples of a long loess-red clay section and six spacial sections into three fractions in order to counteracting the effect of particle size on the values of weathering proxies. First, the loess unit L1 and S1 of six sections located at Guyuan, Baishui, Changwu, Yongshou, Yangling and Lantian, Chinese Loess Plateau were sampled. These samples were divided into three fractions: <5μm, 5-20μm, 20-63μm, which were then analyzed for the primary elements using an X-ray fluorescence analyser. Results show that the effect of particle is much smaller on the fraction <5μm than other fractions. Therefore, the fraction <5μm can reflect the change of chemical weathering intensity much better. In addition, we divided Baishui section samples into three fractions, and analyzed them with X-ray fluorescence for primary elements. Results show that the value of CIA vary in different size fractions, indicating different weathering progress. Elements K, Na, Ca and Mg in the <5μm fraction have a sequence which is the reverse of Bowen Sequence. This may be a important sense for the change of source regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A suit of cherts deposited in deep-ocean basin of South China during terminal Ediacaran and the beginning of Early Cambrian (about 550~540Ma). The origin of these cherts are controversial, and contrary standpoints exist for the redox state of the terminal Ediacaran deep-ocean because of poor study. In this paper, a detailed sedimentology, element and stable isotope geochemistry study were conducted for cherts of Liuchapo Formation in Anhua County, Hunan Province, Laobao Formation in Sanjiang County, Guangxi Province, and Piyuancun Formation in Xiuning County, Anhui Province. Some conclusions were drawn: (1) These cherts were mainly formed through chemical deposition of dissolved silica derived from chemical weathering in continent. Biological processes played a part in the cherts formation, however, the influence of hydrothermal fluids and detritus materials were trivial. (2) The terminal Ediacaran deep-ocean was anoxic and gradually oxidized. (3) Intense bacterial sulfate reduction decreased sulfate concentration in the ocean and the water column became euxinic during Ediacaran-Cambrian transition period. (4) Due to a high CO2 concentration in the terminal Ediacaran atmosphere, chemical weathering in continent dramatically increased and huge amounts of nutrimental material were transferred into ocean. The biota bloomed because of the nutrimental material. Degradation of huge amounts of organic matter maintained dissolved organic carbon reservoir in the ocean, and prolonged the deep-ocean anoxia.