941 resultados para Characteristic equations
Resumo:
AIMS: Renal dysfunction is a powerful predictor of adverse outcomes in patients hospitalized for acute coronary syndrome. Three new glomerular filtration rate (GFR) estimating equations recently emerged, based on serum creatinine (CKD-EPIcreat), serum cystatin C (CKD-EPIcyst) or a combination of both (CKD-EPIcreat/cyst), and they are currently recommended to confirm the presence of renal dysfunction. Our aim was to analyse the predictive value of these new estimated GFR (eGFR) equations regarding mid-term mortality in patients with acute coronary syndrome, and compare them with the traditional Modification of Diet in Renal Disease (MDRD-4) formula. METHODS AND RESULTS: 801 patients admitted for acute coronary syndrome (age 67.3±13.3 years, 68.5% male) and followed for 23.6±9.8 months were included. For each equation, patient risk stratification was performed based on eGFR values: high-risk group (eGFR<60ml/min per 1.73m2) and low-risk group (eGFR⩾60ml/min per 1.73m2). The predictive performances of these equations were compared using area under each receiver operating characteristic curves (AUCs). Overall risk stratification improvement was assessed by the net reclassification improvement index. The incidence of the primary endpoint was 18.1%. The CKD-EPIcyst equation had the highest overall discriminate performance regarding mid-term mortality (AUC 0.782±0.20) and outperformed all other equations (ρ<0.001 in all comparisons). When compared with the MDRD-4 formula, the CKD-EPIcyst equation accurately reclassified a significant percentage of patients into more appropriate risk categories (net reclassification improvement index of 11.9% (p=0.003)). The CKD-EPIcyst equation added prognostic power to the Global Registry of Acute Coronary Events (GRACE) score in the prediction of mid-term mortality. CONCLUSION: The CKD-EPIcyst equation provides a novel and improved method for assessing the mid-term mortality risk in patients admitted for acute coronary syndrome, outperforming the most widely used formula (MDRD-4), and improving the predictive value of the GRACE score. These results reinforce the added value of cystatin C as a risk marker in these patients.
Resumo:
Primary X-ray spectra were measured in the range of 80-150kV in order to validate a computer program based on a semiempirical model. The ratio between the characteristic and total air Kerma was considered to compare computed results and experimental data. Results show that the experimental spectra have higher first HVL and mean energy than the calculated ones. The ratios between the characteristic and total air Kerma for calculated spectra are in good agreement with experimental results for all filtrations used.
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
We evaluated the performance of a novel procedure for segmenting mammograms and detecting clustered microcalcifications in two types of image sets obtained from digitization of mammograms using either a laser scanner, or a conventional ""optical"" scanner. Specific regions forming the digital mammograms were identified and selected, in which clustered microcalcifications appeared or not. A remarkable increase in image intensity was noticed in the images from the optical scanner compared with the original mammograms. A procedure based on a polynomial correction was developed to compensate the changes in the characteristic curves from the scanners, relative to the curves from the films. The processing scheme was applied to both sets, before and after the polynomial correction. The results indicated clearly the influence of the mammogram digitization on the performance of processing schemes intended to detect microcalcifications. The image processing techniques applied to mammograms digitized by both scanners, without the polynomial intensity correction, resulted in a better sensibility in detecting microcalcifications in the images from the laser scanner. However, when the polynomial correction was applied to the images from the optical scanner, no differences in performance were observed for both types of images. (C) 2008 SPIE and IS&T [DOI: 10.1117/1.3013544]
Resumo:
In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.
Resumo:
In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.
Resumo:
We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.
Resumo:
In this paper we discuss the existence of solutions for a class of abstract partial neutral functional differential equations.
Resumo:
We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
In random matrix theory, the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists of removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristic of extreme values of an uncorrelated sequence, is obtained.
Resumo:
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in A + A collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time (tau(rel)) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small tau(rel) it also allows one to catch the viscous effects in hadronic component-hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion m(T) spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher p(T) particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form ""sum of squares"", satisfying Hormander's bracket condition. Let q be a characteristic point; for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji Show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves' conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.