949 resultados para Chaotic attractor
Resumo:
Chaotic behavior of closed loop pulsating heat pipes (PHPs) was studied. The PHPs were fabricated by capillary tubes with outer and inner diameters of 2.0 and 1.20 mm. FC-72 and deionized water were used as the working fluids. Experiments cover the following data ranges: number of turns of 4, 6, and 9, inclination angles from 5 degrees (near horizontal) to 90, (vertical), charge ratios from 50% to 80%, heating powers from 7.5 to 60.0 W. The nonlinear analysis is based on the recorded time series of temperatures on the evaporation, adiabatic, and condensation sections. The present study confirms that PHPs are deterministic chaotic systems. Autocorrelation functions (ACF) are decreased versus time, indicating prediction ability of the system is finite. Three typical attractor patterns are identified. Hurst exponents are very high, i.e., from 0.85 to 0.95, indicating very strong persistent properties of PHPs. Curves of correlation integral versus radius of hypersphere indicate two linear sections for water PHPs, corresponding to both high frequency, low amplitude, and low frequency, large amplitude oscillations. At small inclination angles near horizontal, correlation dimensions are not uniform at different turns of PHPs. The non-uniformity of correlation dimensions is significantly improved with increases in inclination angles. Effect of inclination angles on the chaotic parameters is complex for FC-72 PHPs, but it is certain that correlation dimensions and Kolmogorov entropies are increased with increases in inclination angles. The optimal charge ratios are about 60-70%, at which correlation dimensions and Kolmogorov entropies are high. The higher the heating power, the larger the correlation dimensions and Kolmogorov entropies are. For most runs, large correlation dimensions and Kolmogorov entropies correspond to small thermal resistances, i.e., better thermal performance, except for FC-72 PHPs at small inclination angles of theta < 15 degrees.
Resumo:
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Resumo:
In this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.
Resumo:
A novel cryptography method based on the Lorenz`s attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.
Resumo:
Optical logic cells, employed in several tasks as optical computing or optically controlled switches for photonic switching, offer a very particular behavior when the working conditions are slightly modified. One of the more striking changes occurs when some delayed feedback is applied between one of the possible output gates and a control input. Some of these new phenomena have been studied by us and reported in previous papers. A chaotic behavior is one of the more characteristic results and its possible applications range from communications to cryptography. But the main problem related with this behavior is the binary character of the resulting signal. Most of the nowadays-employed techniques to analyze chaotic signals concern to analogue signals where algebraic equations are possible to obtain. There are no specific tools to study digital chaotic signals. Some methods have been proposed. One of the more used is equivalent to the phase diagram in analogue chaos. The binary signal is converted to hexadecimal and then analyzed. We represented the fractal characteristics of the signal. It has the characteristics of a strange attractor and gives more information than the obtained from previous methods. A phase diagram, as the one obtained by previous techniques, may fully cover its surface with the trajectories and almost no information may be obtained from it. Now, this new method offers the evolution around just a certain area being this lines the strange attractor.
Resumo:
Mode-locked lasers emitting a train of femtosecond pulses called dissipative solitons are an enabling technology for metrology, high-resolution spectroscopy, fibre optic communications, nano-optics and many other fields of science and applications. Recently, the vector nature of dissipative solitons has been exploited to demonstrate mode locked lasing with both locked and rapidly evolving states of polarisation. Here, for an erbium-doped fibre laser mode locked with carbon nanotubes, we demonstrate the first experimental and theoretical evidence of a new class of slowly evolving vector solitons characterized by a double-scroll chaotic polarisation attractor substantially different from Lorenz, Rössler and Ikeda strange attractors. The underlying physics comprises a long time scale coherent coupling of two polarisation modes. The observed phenomena, apart from the fundamental interest, provide a base for advances in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetisation in data storage devices and many other areas. © 2014 CIOMP. All rights reserved.
Resumo:
Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.
Resumo:
This paper is a deductive theoretical enquiry into the flow of effects from the geometry of price bubbles/busts, to price indices, to pricing behaviours of sellers and buyers, and back to price bubbles/busts. The intent of the analysis is to suggest analytical approaches to identify the presence, maturity, and/or sustainability of a price bubble. We present a pricing model to emulate market behaviour, including numeric examples and charts of the interaction of supply and demand. The model extends into dynamic market solutions myopic (single- and multi-period) backward looking rational expectations to demonstrate how buyers and sellers interact to affect supply and demand and to show how capital gain expectations can be a destabilising influence – i.e. the lagged effects of past price gains can drive the market price away from long-run market-worth. Investing based on the outputs of past price-based valuation models appear to be more of a game-of-chance than a sound investment strategy.
Resumo:
Globally, it is estimated that 24 million people live with schizophrenia (WHO, 2008), while 1.2 million people have been diagnosed with schizophrenia in Indonesia. Auditory hallucinations are a key symptom of schizophrenia according to the DSM IV-TR (Frances, First, & Pincus, 2002). It is estimated that the prevalence of auditory hallucinations in people with schizophrenia range from 64.3% to 83.4% (Thomas et al., 2007). Until recently, the majority of studies were conducted in Western societies the primary focus of which, has been on the causes and treatments of auditory hallucinations (Walton, 1999) and on the biological and cognitive aspects of the phenomenon (Changas, Garcia-Montes, de Lemus & Olivencia, 2003). While a few studies have explored the lived experience of people with schizophrenia, there is little research about the experience of auditory hallucinations. Therefore, the focus of this study was on an exploration of the experience of auditory hallucinations as described by Indonesian people living with schizophrenia. Based on the available literature, there have been no published qualitative studies relating to the lived experience of auditory hallucinations as described by Indonesian people diagnosed with schizophrenia. Husserlian descriptive phenomenological approach was applied in explicating the phenomenon of auditory hallucinations in this study. In-depth audio-taped interviews were conducted with 13 participants. Analysis of participant transcripts was undertaken using Colaizzi.s (1973) approach. Eight major themes were explicated: Feeling more like a robot than a human being - feeling compelled to respond to auditory hallucinations; voices of contradiction - a point of confusion; a frightening experience, the voices emerged at times of loss and grief; disruption to daily living; tattered relationships and family disarray; finding a personal path to living with auditory hallucinations; seeking relief in Allah through prayer and ritual. Experiencing auditory hallucinations for people diagnosed with schizophrenia is a journey of challenges as each individual struggles to understand their now changed life-world, reconstruct a sense of meaning within their illness experience, and to carve out a pathway to wellness. The challenge for practitioners is to learn from those who have experienced auditory hallucinations, to be with them in their journey of recovery and wellness, and to apply a person-centered approach to care within the context of a multidisciplinary team.
Resumo:
We consider diffusively coupled map lattices with P neighbors (where P is arbitrary) and study the stability of the synchronized state. We show that there exists a critical lattice size beyond which the synchronized state is unstable. This generalizes earlier results for nearest neighbor coupling. We confirm the analytical results by performing numerical simulations on coupled map lattices with logistic map at each node. The above analysis is also extended to two-dimensional P-neighbor diffusively coupled map lattices.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We consider the problem of signal estimation where the observed time series is modeled as y(i) = x(i) + s(i) with {x(i)} being an orbit of a chaotic self-map on a compact subset of R-d and {s(i)} a sequence in R-d converging to zero. This model is motivated by experimental results in the literature where the ocean ambient noise and the ocean clutter are found to be chaotic. Making use of observations up to time n, we propose an estimate of s(i) for i < n and show that it approaches s(i) as n -> infinity for typical asymptotic behaviors of orbits. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A three-species food chain model is studied analytically as well as numerically. Integrability of the model is studied using Painleve analysis while chaotic behavior is studied using numerical techniques, such as calculation of Lyapunov exponents, plotting the bifurcation diagram and phase plots. We correct and critically comment on the wrong results reported recently on this ecological model, in a paper by Rai [1995].
Resumo:
The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.