774 resultados para Changing Neutral Currents


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze generalized CP symmetries of two-Higgs doublet models, extending them from the scalar to the fermion sector of the theory. We show that, other than the usual CP transformation, there is only one of those symmetries which does not imply massless charged fermions. That single model which accommodates a fermionic mass spectrum compatible with experimental data possesses a remarkable feature. Through a soft breaking of the symmetry it displays a new type of spontaneous CP violation, which does not occur in the scalar sector responsible for the symmetry breaking mechanism but, rather, in the fermion sector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a two-Higgs-doublet model, with a Z(3) symmetry, in which CP violation originates solely in a soft (dimension-2) coupling in the scalar potential, and reveals itself solely in the CKM (quark mixing) matrix. In particular, in the mass basis the Yukawa interactions of the neutral scalars are all real. The model has only eleven parameters to fit the six quark masses and the four independent CKM-matrix observables. We find regions of parameter space in which the flavour-changing neutral couplings are so suppressed that they allow the scalars to be no heavier than a few hundred GeV. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the two Higgs doublet model, there is the possibility that the vacuum where the universe resides in is metastable. We present the tree-level bounds on the scalar potential parameters which have to be obeyed to prevent that situation. Analytical expressions for those bounds are shown for the most used potential, that with a softly broken Z(2) symmetry. The impact of those bounds on the model's phenomenology is discussed in detail, as well as the importance of the current LHC results in determining whether the vacuum we live in is or is not stable. We demonstrate how the vacuum stability bounds can be obtained for the most generic CP-conserving potential, and provide a simple method to implement them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a search for the flavor-changing neutral current decay B-s(0)->phi mu(+)mu(-) using about 0.45 fb(-1) of data collected in p (p) over bar collisions at root s=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We find an upper limit on the branching ratio of this decay normalized to B-s(0)-> J/psi phi of B(B-s(0)->phi mu(+)mu(-))/B(B-s(0)-> J/psi phi)< 4.4x10(-3) at the 95% C.L. Using the central value of the world average branching fraction of B-s(0)-> J/psi phi, the limit corresponds to B(B-s(0)->phi mu(+)mu(-))< 4.1x10(-6) at the 95% C.L., the most stringent upper bound to date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that in 3-3-1 models there exist a natural relation among the SU(3)(L) coupling constant g, the electroweak mixing angle theta(W), the mass of the W, and one of the vacuum expectation values, which implies that those models can be realized at low energy scales and, in particular, even at the electroweak scale. So that, being that symmetries realized in Nature, new physics may be really just around the corner. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the potential effects of anomalous couplings of the third generation quarks to gauge bosons in rare B decays. We focus on the constraints from flavor changing neutral current processes such as b→sγ and b →sl+l-. We consider both dimension-four and dimension-five operators and show that the latter can give large deviations from the standard model in the still unobserved dilepton modes, even after the bounds from b→sγ and precision electroweak observables are taken into account. ©2000 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is on loop-induced processes in theories with warped extra dimensions where the fermions and gauge bosons are allowed to propagate in the bulk, while the Higgs sector is localized on or near the infra-red brane. These so-called Randall-Sundrum (RS) models have the potential to simultaneously explain the hierarchy problem and address the question of what causes the large hierarchies in the fermion sector of the Standard Model (SM). The Kaluza-Klein (KK) excitations of the bulk fields can significantly affect the loop-level processes considered in this thesis and, hence, could indirectly indicate the existence of warped extra dimensions. The analytical part of this thesis deals with the detailed calculation of three loop-induced processes in the RS models in question: the Higgs production process via gluon fusion, the Higgs decay into two photons, and the flavor-changing neutral current b → sγ. A comprehensive, five-dimensional (5D) analysis will show that the amplitudes of the Higgs processes can be expressed in terms of integrals over 5D propagators with the Higgs-boson profile along the extra dimension, which can be used for arbitrary models with a compact extra dimension. To this end, both the boson and fermion propagators in a warped 5D background are derived. It will be shown that the seemingly contradictory results for the gluon fusion amplitude in the literature can be traced back to two distinguishable, not smoothly-connected incarnations of the RS model. The investigation of the b → sγ transition is performed in the KK decomposed theory. It will be argued that summing up the entire KK tower leads to a finite result, which can be well approximated by a closed, analytical expression.rnIn the phenomenological part of this thesis, the analytic results of all relevant Higgs couplings in the RS models in question are compared with current and in particular future sensitivities of the Large Hadron Collider (LHC) and the planned International Linear Collider. The latest LHC Higgs data is then used to exclude significant portions of the parameter space of each RS scenario. The analysis will demonstrate that especially the loop-induced Higgs couplings are sensitive to KK particles of the custodial RS model with masses in the multi tera-electronvolt range. Finally, the effect of the RS model on three flavor observables associated with the b → sγ transition are examined. In particular, we study the branching ratio of the inclusive decay B → X_s γ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we perform an extensive study of flavor observables in a two-Higgs-doublet model with generic Yukawa structure (of type III). This model is interesting not only because it is the decoupling limit of the minimal supersymmetric standard model but also because of its rich flavor phenomenology which also allows for sizable effects not only in flavor-changing neutral-current (FCNC) processes but also in tauonic B decays. We examine the possible effects in flavor physics and constrain the model both from tree-level processes and from loop observables. The free parameters of the model are the heavy Higgs mass, tanβ (the ratio of vacuum expectation values) and the “nonholomorphic” Yukawa couplings ϵfij(f=u,d,ℓ). In our analysis we constrain the elements ϵfij in various ways: In a first step we give order of magnitude constraints on ϵfij from ’t Hooft’s naturalness criterion, finding that all ϵfij must be rather small unless the third generation is involved. In a second step, we constrain the Yukawa structure of the type-III two-Higgs-doublet model from tree-level FCNC processes (Bs,d→μ+μ−, KL→μ+μ−, D¯¯¯0→μ+μ−, ΔF=2 processes, τ−→μ−μ+μ−, τ−→e−μ+μ− and μ−→e−e+e−) and observe that all flavor off-diagonal elements of these couplings, except ϵu32,31 and ϵu23,13, must be very small in order to satisfy the current experimental bounds. In a third step, we consider Higgs mediated loop contributions to FCNC processes [b→s(d)γ, Bs,d mixing, K−K¯¯¯ mixing and μ→eγ] finding that also ϵu13 and ϵu23 must be very small, while the bounds on ϵu31 and ϵu32 are especially weak. Furthermore, considering the constraints from electric dipole moments we obtain constrains on some parameters ϵu,ℓij. Taking into account the constraints from FCNC processes we study the size of possible effects in the tauonic B decays (B→τν, B→Dτν and B→D∗τν) as well as in D(s)→τν, D(s)→μν, K(π)→eν, K(π)→μν and τ→K(π)ν which are all sensitive to tree-level charged Higgs exchange. Interestingly, the unconstrained ϵu32,31 are just the elements which directly enter the branching ratios for B→τν, B→Dτν and B→D∗τν. We show that they can explain the deviations from the SM predictions in these processes without fine-tuning. Furthermore, B→τν, B→Dτν and B→D∗τν can even be explained simultaneously. Finally, we give upper limits on the branching ratios of the lepton flavor-violating neutral B meson decays (Bs,d→μe, Bs,d→τe and Bs,d→τμ) and correlate the radiative lepton decays (τ→μγ, τ→eγ and μ→eγ) to the corresponding neutral current lepton decays (τ−→μ−μ+μ−, τ−→e−μ+μ− and μ−→e−e+e−). A detailed Appendix contains all relevant information for the considered processes for general scalar-fermion-fermion couplings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E(2)dN/dE < 1.74 x 10(-7)GeVcm(-2)s(-1)sr(-1) at 90% C.L. in the energy range 1 x 10(17) eV < E < 1 x 10(20)eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study general models of holographic superconductivity parametrized by four arbitrary functions of a neutral scalar field of the bulk theory. The models can accommodate several features of real superconductors, like arbitrary critical temperatures and critical exponents in a certain range, and perhaps impurities or boundary or thickness effects. We find analytical expressions for the critical exponents of the general model and show that they satisfy the Rushbrooke identity. An important subclass of models exhibit second order phase transitions. A study of the specific heat shows that general models can also describe holographic superconductors undergoing first, second and third (or higher) order phase transitions. We discuss how small deformations of the HHH model can lead to the appearance of resonance peaks in the conductivity, which increase in number and become narrower as the temperature is gradually decreased, without the need for tuning mass of the scalar to be close to the Breitenlohner-Freedman bound. Finally, we investigate the inclusion of a generalized ¿theta term¿ producing Hall effect without magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has shown that, in a University context, mastery goals are highly valued, and that students may endorse these goals either because they believe in their utility (i.e., social utility), in which case mastery goals are positively linked to achievement, or to create a positive image of themselves (i.e., social desirability), in which case mastery goals do not predict academic achievement. The present two experiments induced high vs. neutral levels of mastery goals' social utility and social desirability. Results confirmed that mastery goals predicted performance only when these goals were presented as socially useful but not socially desirable, especially among low achievers, those who need mastery goals the most to succeed.