77 resultados para Cervidae
Resumo:
As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.
Resumo:
Muntjac deer (Muntiacinae, Cervidae) are of great interest in evolutionary studies because of their dramatic chromosome variations and recent discoveries of several new species. In this paper, we analyze the evolution of karyotypes of muntjac deer in the context of a phylogeny which is based on 1,844-bp mitochondrial DNA sequences of seven generally recognized species in the muntjac subfamily. The phylogenetic results support the hypothesis that karyotypic evolution in muntjac deer has proceeded via reduction in diploid number. However, the reduction in number is not always linear, i.e., not strictly following the order: 46-->14/13-->8/9-->6/7. For example, Muntiacus muntjak (2n = 6/7) shares a common ancestor with Muntiacus feae (2n = 13/14), which indicates that its karyotype was derived in parallel with M. feae's from an ancestral karyotype of 2n greater than or equal to 13/14. The newly discovered giant muntjac (Muntiacus vuquangensis) may represent another pa;allel reduction lineage from the ancestral 2n = 46 karyotype. Our phylogenetic results indicate that the giant muntjac is relatively closer to Muntiacus reevesi than to other muntjacs and may be placed in the genus Muntiacus. Analyses of sequence divergence reveal that the rate of change in chromosome number in muntjac deer is one of the fastest in vertebrates. Within the muntjac subfamily, the fastest evolutionary rate is found in the Fea's lineage, in which two species with different karyotypes diverged in around 0.5 Myr.
Resumo:
To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6-10, 12-22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1-5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1-5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
The marsh deer is the largest neotropical cervid with morphological and ecological adaptations to wetlands and riparian habitats. Historically, this now endangered species occupied habitats along the major river basins in South America, ranging from southern Amazonia into northern Argentina to the Parana river delta. This particularly close association with wetlands makes marsh deer an excellent species for studying the effects of Pleistocene climatic changes on their demographic and phylogeographic patterns. We examined mitochondrial DNA variation in 127 marsh deer from 4 areas distributed throughout the Rio de]a Plata basin. We found 17 haplotypes in marsh deer from Brazil, Bolivia and Argentina that differed by 1-8 substitutions in a 601 bp fragment of mitochondrial control region sequence, and 486 bp of cytochrome b revealed only 3 variable sites that defined 4 haplotypes. Phylogeny and distribution of control region haplotypes suggest that populations close to the Pantanal area in central Brazil underwent a rapid population expansion and that this occurred approximately 28,000-25,000 years BP. Paleoclimatic data from this period suggests that there was a dramatic increase for precipitation in the medium latitudes in South America and these conditions may have fostered marsh deer's population growth.
Resumo:
The study of diet and physiological peculiarities of the digestive system of neotropical deer is not well known and the literature shows inconsistencies. To better understand the digestive system of these mammals the difference in the gastro-intestinal transit time of four species of neotropical deer (Mazama americana, Mazama gouazoubira, Mazama nana, Blastocerus dichotomus), kept ill captivity, was evaluated. Four plants (Neonotonia wightii, Morus albans, Medicago sativa, Leucaena leucocephala) were utilized and two variables were measured, mean time of the beginning of the elimination (BE) and mean time of permanence (TP). The results obtained for BE indicated similarity among the deer species, with significant differences between M. gouazoubira (mean = 13.62 hr) and M. Americana (mean = 19.25 hr). For the plants, the BE was faster with N. wightii and L. leucocephala, and slower for M. sativa. The TP results for B. dichotomus showed longer time when compared to the other species, whereas M. gouazoubira had a lower permanence. Overall, N. wightii had the highest retention time in the digestive tract of all the deer species studied. Associated with this observation, N. wightii had the highest quantity of plant fiber of the plants tested. In a similar fashion M. sativa showed the lowest TP in the digestive tract of the deer and had the lowest quantity of acid detergent fiber. The data from this study showed that, within species, the shape of the excretion curve of the plants was similar when the animals consumed N. wightii or M. sativa. Blastocerus dichotomus and M. gouazoubira had the highest and the lowest gastro-intestinal transit time, respectively. This suggests that these species characterize different abilities to digest high fiber food, and consequently, represent the two extremities in the morphophysiological adaptation within the deer species evaluated. This information is vital because it is important to know the digestive physiology to define the diet of captive animals, particularly regarding the quantity and quality of fiber. Zoo Biol 25:47-57, 2006. (C) 2005 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The marsh deer (Blastocerus dichotomus) is an endangered species froth the marshlands of central South America. Its population has declined in several regions due to the loss of available habitat caused by human activities, especially the construction of hydroelectric darns. The capture of individual deer is critical for research programs and population management. This report describes a novel live-capture technique, which uses a helicopter to drive the animals into a terrain that restricts their movement such as thick vegetation or deep water (60-120 cm in depth). Following confinement, animals are manually restrained. The short pursuit time (median = 2 thin), low mortality rate (0.82-3.28%), and the absence of injury to both the capture team and animals suggest that this method is appropriate for the safe capture of this species. Body temperature correlated with the pursuit time (R-2 = 0.15) but was not significantly altered with pursuit times <3 min.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study deals with origin, sedimentary filling and fossil content of three tanks situated at Antônio Martins, Barcelona, Rui Barbosa, and Apodi counties, Rio Grande do Norte State. In addition, fossil materials from the Câmara Cascudo Museum - UFRN - Fundação Amigos do Lajedo Soledade - FALS, and from private ownership were investigated. The following families were identified: Megatberiidae, Gomphotheriidae, Mylodontidae, Equidae, Felidae, Canidae, Hydrochoeridae, Camelidae, Cervidae, Dasypodidae, Glyptodontidae, Macraucheniidae, Toxodontidae, and an undetermined Edentata Pilosa. The megafauna analysis indicated that herbivorc families occur mainly in tanks, whereas carnivore families occur in a vast proportion in an investigated ravine. Taphonomie analyses were limited to physical features because the vast majority of fossils were previously colleted without appropriate care for this kind of study. The main fossization processes were identified during diagenetie investigation. Permineralization is the most important process and replacement is the secondary one during fossilization. The study concluded that paleoenvironmental conditions during the late Pleistocene were more humid than the current one. Tropical savana, characterized by fields and cerrados , was the dominant vegetation
Resumo:
The Pampas deer (Ozotoceros bezoarticus L. 1758) is the most endangered neotropical cervid, and in the past occupied a wide range of open habitats including grassland, pampas, savanna, and cerrado (Brazil) from 5 degrees to 41 degrees S. To better understand the effect of habitat fragmentation on gene flow and genetic variation, and to uncover genetic units for conservation, we examined DNA sequences from the mitochondrial control region of 54 individuals from six localities distributed throughout the present geographical range of the Pampas deer. Our results suggest that the control region of the Pampas deer is one of the most polymorphic of any mammal. This remarkably high variability probably reflects large historic population sizes of millions of individuals in contrast to numbers of fewer than 80 000 today. Gene flow between populations is generally close to one migrant per generation and, with the exception of two populations from Argentina, all populations are significantly differentiated. The degree of gene flow was correlated with geographical distance between populations, a result consistent with limited dispersal being the primary determinant of genetic differentiation between populations. The molecular genetic results provide a mandate for habitat restoration and reintroduction of Pampas deer so that levels of genetic variation can be preserved and historic patterns of abundance can be reconstructed. However, the source of individuals for reintroduction generally should be from populations geographically closest to those now in danger of extinction.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A study of ticks associated with wild animals was carried out from September 1996 to April 1998 at the Fazenda Alegria (21,000 ha), in the Nhecolândia Pantanal, State of Mato Grosso do Sul, Brazil, a sunken plain bordering the upper Paraguay river, located 19 × 08′S; 56 × 46′W. A total of 81 wild animals (13 species, 6 orders) were captured with the aid of nets, and ticks were found on 63 (78%). Tick species identified included Boophilus microplus (Canestrini), Amblyomma cajennense (F.), A. parvum (Aragão), A. pseudo-concolor (Aragão), A. scalpturatum (Neumann), A. nodosum (Neumann), A. ovale (Koch), and A. tigrinum (Koch). Dragging from grasslands (campos) yielded negative results compared to the high concentration of ticks, mainly nymphs, that were collected from leaves in the forests (capão). Predominance of immature instars (Amblyomma genera) was observed in the end of winter (August-September). Ticks were associated mainly with coatis, deer (Mazama gouazoubira) and anteater, and these animals may play a role in the epidemiology of tick-transmitted pathogens in the Pantanal if one considers their coexistence with local domestic animals.
Resumo:
The lake from Porto-Primavera hydroelectric power station inundated an area of 2,200 km2 at the border of São Paulo and Mato-Grosso do Sul States, Brazil. Infestations by ticks were evaluated on 135 marsh deer, Blastocerus dichotomus (Illiger), captured before and after inundation. Ticks were collected for identification, and infestation level of animals was assessed by scoring. Deer were divided into four groups according to capture location and temporal relation to the inundation. Groups 1, 2, and 3 were captured before inundation. Group 4 was captured after inundation. Four tick species were found: Amblyomma cajennense (F.), Amblyomma triste Koch, Anocentor nitens (Neumann), and Boophilus microplus (Canestrini). Groups 1, 2, 3, and 4 had 30, 45, 100, and 96%, respectively, of animals carrying B. microplus ticks. A. triste was observed on 16, 22, 22, and 88% of animals from groups 1,2,3, and 4, respectively. A. nitens and A. cajennense were observed only on group 4, on 32 and 16% of the animals, respectively. Groups 1 and 2 had only 4.8 and 6.1% of animals with high infestation levels, respectively, and no ticks on 46.8% and 45.5% of the animals, respectively. Conversely, groups 3 and 4 lacked noninfested animals and had high infestation levels on 77.8 and 50% of deer, respectively. Marsh area shrinkage was blamed for higher infestation levels on deer from groups 3 and 4. The widespread presence of A. triste on marsh deer, a Neotropical tick species, raises the possibility of a natural host-parasite relationship.
Resumo:
We evaluated morphological and cytogenetic data for three animals similar to the species of deer previously described as the Small Red Brocket (Mazama bororo Duarte, 1996). We compared these animals with five M. americana, five M. nana and three hybrids between M. americana and M. nana. The M. bororo chromosomes can be standardized as follows : 8 group A chromosomes (large bi-armed) ; 2 group C chromosomes (small bi-armed) ; 4 group D chromosomes (large acrocentric) ; and 18 group E chromosomes (small acrocentric). There were great differences between this karyotype and those of M. nana and M. americana. With respect to external morphology, the animals in the present study had some similarities to M. americana and M. nana and great similarities with their hybrids. Most of the body measurements of M. bororo were significantly different from those of M. americana and M. nana, but similar to those of the hybrids. Mazama bororo is distributed in the last remnants of the Atlantic forest, extending from the southeastern part of the State of São Paulo to the northeastern part of the State of Paraná, Brazil. The rapid destruction of the Atlantic Forest requires urgent conservation measures for the species.