988 resultados para Centre for Earth Sciences
Resumo:
Mining and blending operations in the high grade iron ore deposit under study are performed to optimize recovery with minimal alumina content while maintaining required levels of other chemical component and a proper mix of ore types. In the present work the regionalisation of alumina in the ores has been studied independently and its effects on global and local recoverable tonnage as well as on alternatives of mining operations have been evaluated. The global tonnage recovery curves for blocks (20m x 20m x 12m) obtained by simulation closely approximated the curves obtained theoretically using a change of support under the discretised gaussian model. Variations in block size up to 80m x 20m x 12m did not affect the recovery as the horizontal dimensions of the blocks are small in relation to the range of the variogram. A comparison of the local tonnage recovery curves obtained through multiple conditional simulations made with that obtained by the method of uniform conditioning of block grades on an estimate of panel 100m x 100m x 12m panel grade reveals comparable results only in panels which have been well conditioned and possesing an ensemble simulation mean close to the ordinary kriged value for the panel. Study of simple alternative sequence of mining on the conditionally simulated deposit shows that concentration of mining operations simultaneously on a single bench enhances the fluctuation in alumina values of ore mined.
Resumo:
Coastal lagoons are complex ecosystems exhibiting a high degree of non-linearity in the distribution and exchange of nutrients dissolved in the water column due to their spatio-temporal characteristics. This factor has a direct influence on the concentrations of chlorophyll-a, an indicator of the primary productivity in the water bodies as lakes and lagoons. Moreover the seasonal variability in the characteristics of large-scale basins further contributes to the uncertainties in the data on the physico-chemical and biological characteristics of the lagoons. Considering the above, modelling the distributions of the nutrients with respect to the chlorophyll-concentrations, hence requires an effective approach which will appropriately account for the non-linearity of the ecosystem as well as the uncertainties in the available data. In the present investigation, fuzzy logic was used to develop a new model of the primary production for Pulicat lagoon, Southeast coast of India. Multiple regression analysis revealed that the concentrations of chlorophyll-a in the lagoon was highly influenced by the dissolved concentrations of nitrate, nitrites and phosphorous to different extents over different seasons and years. A high degree of agreement was obtained between the actual field values and those predicted by the new fuzzy model (d = 0.881 to 0.788) for the years 2005 and 2006, illustrating the efficiency of the model in predicting the values of chlorophyll-a in the lagoon.
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.
Resumo:
The 1300-km rupture of the 2004 interplate earthquake terminated at around 15 degrees N, in the northernmost segment of the Andaman-Nicobar subduction zone. This part of the plate boundary is noted for its generally lower level seismicity, compared with the southern segments. Based on the Global Centroid Moment Tensor (CMT) and National Earthquake Information Center (NEIC) data, most of the earthquakes of M-w >= 4.5 prior to 2004 were associated with the Andaman Spreading Ridge (ASR), and a few events were located within the forearc basin. The 2004 event was followed by an upward migration of hypocenters along the subducting plate, and the Andaman segment experienced a surge of aftershock activity. The continuing extensional faulting events, including the most recent earthquake (10 August 2009; M-w 7.5) in the northern end of the 2004 rupture, suggest the reduction of compressional strain associated with the interplate event. The style of faulting of the intraplate events before and after a great plate boundary earthquake reflects the relative influences of the plate-driving forces. Here we discuss the pattern of earthquakes in the Andaman segment before and after the 2004 event to appraise the spatial and temporal relation between large interplate thrust events and intraplate deformation. This study suggests that faulting mechanisms in the outer-ridge and outer-rise regions could be indicative of the maturity of interplate seismic cycles.
Resumo:
The similar to 2500 km-long Himalaya plate boundary experienced three great earthquakes during the past century, but none of them generated any surface rupture. The segments between the 1905-1934 and the 1897-1950 sources, known as the central and Assam seismic gaps respectively, have long been considered holding potential for future great earthquakes. This paper addresses two issues concerning earthquakes along the Himalaya plate boundary. One, the absence of surface rupture associated with the great earthquakes, vis-a-vis the purported large slip observed from paleoseismological investigations and two, the current understanding of the status of the seismic gaps in the Central Himalaya and Assam, in view of the paleoseismological and historical data being gathered. We suggest that the ruptures of earthquakes nucleating on the basal detachment are likely to be restricted by the crustal ramps and thus generate no surface ruptures, whereas those originating on the faults within the wedges promote upward propagation of rupture and displacement, as observed during the 2005 Kashmir earthquake, that showed a peak offset of 7 m. The occasional reactivation of these thrust systems within the duplex zone may also be responsible for the observed temporal and spatial clustering of earthquakes in the Himalaya. Observations presented in this paper suggest that the last major earthquake in the Central Himalaya occurred during AD 1119-1292, rather than in 1505, as suggested in some previous studies and thus the gap in the plate boundary events is real. As for the Northwestern Himalaya, seismically generated sedimentary features identified in the 1950 source region are generally younger than AD 1400 and evidence for older events is sketchy. The 1897 Shillong earthquake is not a decollement event and its predecessor is probably similar to 1000 years old. Compared to the Central Himalaya, the Assam Gap is a corridor of low seismicity between two tectonically independent seismogenic source zones that cannot be considered as a seismic gap in the conventional sense. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The similar to 1300-km-long rupture zone of the 2004 Andaman-Sumatra megathrust earthquake continues to generate a mix of thrust, normal, and strike-slip faulting events. The 12 June 2010 M(w) 7.5 event on the subducting plate is the most recent large earthquake on the Nicobar segment. The left-lateral faulting mechanism of this event is unusual for the outer-rise region, considering the stress transfer processes that follow great underthrusting earthquakes. Another earthquake (M(w) 7.2) with a similar mechanism occurred very close to this event on 24 July 2005. These earthquakes and most of their aftershocks on the subducting plate were generated by left-lateral strike-slip faulting on north-northeast-south-southwest oriented near-vertical faults, in response to north-northwest-south-southeast directed compression. Pre-2004 earthquake faulting mechanisms on the subducting oceanic plate are consistent with this pattern. Post-2004, left-lateral faulting on the subducting oceanic plate clusters between 5 degrees N and 9 degrees N, where the 90 degrees E ridge impinges the trench axis. Our study observes that the subducting plate off the Sumatra and Nicobar segments behaves similarly to a chip of the India-Australia plate, deforming in response to a generally northwest-southeast oriented compression, an aspect that must be factored into the plate deformation models.
Resumo:
The Indian Ocean earthquake of 26 December 2004 led to significant ground deformation in the Andaman and Nicobar region, accounting for ~800 km of the rupture. Part of this article deals with coseismic changes along these islands, observable from coastal morphology, biological indicators, and Global Positioning System (GPS) data. Our studies indicate that the islands south of 10° N latitude coseismically subsided by 1–1.5 m, both on their eastern and western margins, whereas those to the north showed a mixed response. The western margin of the Middle Andaman emerged by >1 m, and the eastern margin submerged by the same amount. In the North Andaman, both western and eastern margins emerged by >1 m. We also assess the pattern of long-term deformation (uplift/subsidence) and attempt to reconstruct earthquake/tsunami history, with the available data. Geological evidence for past submergence includes dead mangrove vegetation dating to 740 ± 100 yr B.P., near Port Blair and peat layers at 2–4 m and 10–15 m depths observed in core samples from nearby locations. Preliminary paleoseismological/tsunami evidence from the Andaman and Nicobar region and from the east coast of India, suggest at least one predecessor for the 2004 earthquake 900–1000 years ago. The history of earthquakes, although incomplete at this stage, seems to imply that the 2004-type earthquakes are infrequent and follow variable intervals
Resumo:
Literature of the ancient Chola Dynasty (A.D. 9th-11th centuries) of South India and recent archaeological excavations allude to a sea flood that crippled the ancient port at Kaveripattinam, a trading hub for Southeast Asia, and probably affected the entire South Indian coast, analogous to the 2004 Indian Ocean tsunami impact. We present sedimentary evidence from an archaeological site to validate the textual references to this early medieval event. A sandy layer showing bed forms representing high-energy conditions, possibly generated by a seaborne wave, was identified at the Kaveripattinam coast of Tamil Nadu, South India. Its sedimentary characteristics include hummocky cross-stratification, convolute lamination with heavy minerals, rip-up clasts, an erosional contact with the underlying mud bed, and a landward thinning geometry. Admixed with 1000-year-old Chola period artifacts, it provided an optically stimulated luminescence age of 1091 perpendicular to 66 yr and a thermoluminescence age of 993 perpendicular to 73 yr for the embedded pottery sherds. The dates of these proxies converge around 1000 yr B. P., correlative of an ancient tsunami reported from elsewhere along the Indian Ocean coasts. (C) 2011 Wiley Periodicals, Inc.
Resumo:
The Indian Summer Monsoon (ISM) precipitation recharges ground water aquifers in a large portion of the Indian subcontinent. Monsoonal precipitation over the Indian region brings moisture from the Arabian Sea and the Bay of Bengal (BoB). A large difference in the salinity of these two reservoirs, owing to the large amount of freshwater discharge from the continental rivers in the case of the BoB and dominating evaporation processes over the Arabian Sea region, allows us to distinguish the isotopic signatures in water originating in these two water bodies. Most bottled water manufacturers exploit the natural resources of groundwater, replenished by the monsoonal precipitation, for bottling purposes. The work presented here relates the isotopic ratios of bottled water to latitude, moisture source and seasonality in precipitation isotope ratios. We investigated the impact of the above factors on the isotopic composition of bottled water. The result shows a strong relationship between isotope ratios in precipitation (obtained from the GNIP data base)/bottled water with latitude. The approach can be used to predict the latitude at which the bottled water was manufactured. The paper provides two alternative approaches to address the site prediction. The limitations of this approach in identifying source locations and the uncertainty in latitude estimations are discussed. Furthermore, the method provided here can also be used as an important forensic tool for exploring the source location of bottled water from other regions. Copyright (C) 2011 John Wiley & Sons, Ltd.