988 resultados para Cellulose fiber
Resumo:
Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker suspensions were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray diffraction. Results showed that it was possible to obtain ultrathin cellulose nanowhiskers with diameters as low as 5 nm and aspect ratio of up to 60. A possible correlation between preparation conditions and particle size was not observed. Higher residual lignin content was found to increase thermal stability indicating that by controlling reaction conditions one can tailor the thermal properties of the nanowhiskers. Published by Elsevier Ltd.
Resumo:
Foram utilizados quatro cavalos castrados sem raça definida, distribuídos em blocos casualizados. Objetivou-se estudar a viabilização dos indicadores internos, celulose (CELi) e lignina indigestíveis (LIGi), para predizer a digestibilidade em cavalos. Os tratamentos consistiram na determinação da digestibilidade por método direto com a coleta total de fezes (CT) e indireto pelo uso CELi e LIGi obtidos pelas técnicas in situ (IS) na cavidade ruminal de bovinos e in vivo (IV) nos equinos por meio do saco de náilon móvel (SNM). A produção fecal e taxa de recuperação (p > 0,05) médios encontrados foram de 2,80 kg na MS e 101%, respectivamente. As estimativas dos CD dos nutrientes (p > 0,05) foram adequadamente preditos pela CELi e LIGi, obtidos in situ e in vivo, no qual os valores médios observados foram de 52,63, 54,17, 64,90, 43,73 e 98,28% para MS, MO, PB, FDN e Amido, respectivamente. Concluiu-se que a CELi e LIGi podem ser obtidas in vivo por meio do SNM em equinos, para predizer os coeficientes de digestibilidade de nutrientes, consumindo dieta mista.
Resumo:
In this study, microcrystalline cellulose (MCC) was prepared from the acid hydrolysis of bacterial cellulose (BC) produced in culture medium of static Acetobacter xylinum. The MCC-BC produced an average particle size between 70 and 90 mu m and a degree of polymerization (DP) of 250. The characterization of samples was performed by thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy (SEM). The MCC shows a lower thermal stability than the pristine cellulose, which was expected due to the decrease in the DP during the hydrolysis process. In addition, from X-ray diffractograms, we observed a change in the crystalline structure. The images of SEM for the BC and MCC show clear differences with modifications of BC fiber structure and production of particles with characteristics similar to commercial MCC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
Resumo:
Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of applied scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of hyaluronic acid and gelatin (1% w/w) to the culture medium before the bacteria is inoculated. Hyaluronic acid and gelatin influence in bacterial cellulose was analyzed using Transmission Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adhesion and viability studies with human dental pulp stem cells using natural bacterial cellulose/hyaluronic acid as scaffolds for regenerative medicine are presented for the first time in this work. MTT viability assays show higher cell adhesion in bacterial cellulose/gelatin and bacterial cellulose/ hyaluronic acid scaffolds over time with differences due to fiber agglomeration in bacterial cellulose/gelatin. Confocal microscopy images showed that the cell were adhered and well distributed within the fibers in both types of scaffolds.
Resumo:
An extracellular pectin lyase secreted by Fusarium decemcellulare MTCC 2079 under solid state fermentation condition has been purified to electrophoretic homogeniety by using ammonium sulfate fractionation, carboxymethyl cellulose and gel filtration (Sephadex G-100) column chromatographies. The purified enzyme showed single protein band corresponding to molecular mass 45 +/- 01 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme had maximum activity at pH 9.0 and showed maximum stability in the pH range of 9.0-12.0. The optimum temperature of the purified enzyme was 50 degrees C and it showed maximum stability upto 40 degrees C. The energy of activation for the thermal denaturation (Ea) was 59.06 kJ mol(-1) K-1. The K-m and k(cat) values using citrus pectin as the substrate were 0.125mgml(-1) and 72.9 s(-1) in 100mM sodium carbonate buffer pH 9.0 at 50 degrees C. The biophysical studies on pectin lyase showed that its secondary structure belongs to alpha+beta class of protein with comparatively less of beta-sheets. Purified pectin lyase showed efficient retting of Crotolaria juncea fibers.
Resumo:
Fruit purees, combined or not with polysaccharides, have been used in some studies to elaborate edible films. The present study was conducted to evaluate tensile properties and water vapor barrier of alginate-acerola puree films plasticized with corn syrup, and to study the influence of cellulose whiskers from different origins (cotton fiber or coconut husk fiber, the latter submitted to one- or multi-stage bleaching) on the film properties. The whiskers improved the overall tensile properties (except by elongation) and the water vapor barrier of the films. The films with coconut whiskers, even those submitted only to a one-stage bleaching, presented similar properties to those of films with cotton whiskers, despite the low compatibility between the matrix and the remaining lignin in coconut whiskers. This was probably ascribed to a counterbalancing effect of the higher aspect ratios of the coconut whiskers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra-and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results: Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U. mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2: 1 or 4: 1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber. Conclusion: Cellobiohydrolases both with and without a CBD occur in most fungal genomes where both enzymes are secreted, and likely participate in cellulose degradation. The fact that only Cbh1 binds to the substrate and in combination with CelD exhibits strong synergy only when Cbh1 is present in excess, suggests that Cbh1 unties enough chains from cellulose fibers, thus enabling processive access of CelD.
Resumo:
Four crossbred geldings were used in a randomized blocks experimental design. The objective was to study the use of the internal markers indigestible cellulose (iCEL) and indigestible lignin (iLIG), obtained in situ (cattle) or in vivo (equine) to predict nutrient apparent digestibility in horses. Treatments consisted of different methodologies to determine digestibility: direct method with total feces collection (TC), and indirect method using internal markers iCEL and iLIG obtained either by in situ incubation in bovine rumen or in vivo (IV) using the mobile nylon bag (MNB) technique in horses. Feces production was 2.80 kg in DM, and average recovery rate (p > 0.05) was 101%. Nutrient digestibility coefficient (p > 0.05) estimates were adequately predicted by iCEL and iLIG, obtained in situ or in vivo, with average values of 52.63, 54.17, 64.90, 43.73 and 98.28% for dry matter, organic matter, crude protein, neutral detergent fiber and starch, respectively. It can be concluded that iCEL and iLIG may be obtained in vivo by MNB in horses consuming a forage-concentrate diet, to predict nutrient digestibility coefficients.
Resumo:
Recent studies in laying hens have shown that feather peckers eat more feathers than nonpeckers. We hypothesized that food pellets containing feathers would decrease the birds' appetite for feathers and thereby also decrease feather pecking. To separate the effect of feathers from that of insoluble fiber per se, additional control groups were fed pellets containing similar amounts of cellulose. Sixty (experiment 1) and 180 (experiment 2) 1-d-old Lohmann-Selected Leghorn birds were divided into 12 groups of 5 (experiment 1) and 15 (experiment 2) birds, respectively, and kept on slatted floors. During the rearing period, 4 groups each had ad libitum access to either a commercial pelleted diet, a pelleted diet containing 5% (experiment 1) or 10% (experiment 2) of chopped feathers, respectively, or a pelleted diet containing 5% (experiment 1) or 10% (experiment 2) of cellulose, respectively. In the consecutive laying period, all groups received a commercial pelleted diet. In experiment 1, feather pecking was recorded weekly from wk 5 to wk 16. In the laying period, observations were made in wk 18, 20, 22, 23, 24, 25, 26, 27, 28, and 30. In experiment 2, feather pecking was recorded weekly from wk 5 to 11, in wk 16 to wk 18, and in wk 20 and 21. At the end of the rearing period, plumage condition per individual hen was scored. Scores from 1 (denuded) to 4 (intact) were given for each of 6 body parts. The addition of 10% of feathers to the diet reduced the number of severe feather-pecking bouts (P < 0.0129) and improved plumage condition of the back area (P < 0.001) significantly compared with control diets. The relationship between feather pecking/eating and the gastrointestinal consequences thereof, which alter feather pecking-behavior, are unclear. Understanding this relationship might be crucial for understanding the causation of feather pecking in laying hens.